J. Mater. Sci. Technol. ›› 2022, Vol. 125: 157-170.DOI: 10.1016/j.jmst.2022.01.040
• Research Article • Previous Articles Next Articles
Fupeng Huoa,b,*(), Zhi Jina,b, Duy Le Hana,b,d, Jiahui Lia,b, Keke Zhangc, Hiroshi Nishikawaa,*(
)
Received:
2021-09-29
Revised:
2022-01-04
Accepted:
2022-01-09
Published:
2022-04-16
Online:
2022-04-16
Contact:
Fupeng Huo,Hiroshi Nishikawa
About author:
nisikawa@jwri.osaka-u.ac.jp (H. Nishikawa).Fupeng Huo, Zhi Jin, Duy Le Han, Jiahui Li, Keke Zhang, Hiroshi Nishikawa. Novel interface regulation of Sn1.0Ag0.5Cu composite solders reinforced with modified ZrO2: Microstructure and mechanical properties[J]. J. Mater. Sci. Technol., 2022, 125: 157-170.
Materials | SnAgCu | SiC | Si3N4 | TiC | Al2O3 | GaAs | ZrO2 | GNS |
---|---|---|---|---|---|---|---|---|
Density (g/cm3) | 7.32 | 3.20 [ | 3.18 [ | 4.91 [ | 3.96 [ | 5.37 [ | 5.85 [ | 2.25 [ |
CTE (10-6/K) | 25.0 [ | 3.8 [ | 1.2 [ | 7.4 [ | 7.4 [ | 6.4 [ | 9.6 [ | -8.0 [ |
Table 1. Density and CTE values of the SnAgCu solder and several reinforcements.
Materials | SnAgCu | SiC | Si3N4 | TiC | Al2O3 | GaAs | ZrO2 | GNS |
---|---|---|---|---|---|---|---|---|
Density (g/cm3) | 7.32 | 3.20 [ | 3.18 [ | 4.91 [ | 3.96 [ | 5.37 [ | 5.85 [ | 2.25 [ |
CTE (10-6/K) | 25.0 [ | 3.8 [ | 1.2 [ | 7.4 [ | 7.4 [ | 6.4 [ | 9.6 [ | -8.0 [ |
Time | 28.2° | 31.5° | 49.3° | 50.1° | |
---|---|---|---|---|---|
0 h | 0.201 | 0.186 | 0.214 | 0.210 | |
10 h | 0.229 | 0.264 | 0.267 | 0.253 |
Table 2. FWHM of several characteristic peaks for 0 h and 10 h ball milling of ZrO2.
Time | 28.2° | 31.5° | 49.3° | 50.1° | |
---|---|---|---|---|---|
0 h | 0.201 | 0.186 | 0.214 | 0.210 | |
10 h | 0.229 | 0.264 | 0.267 | 0.253 |
Fig. 5. XRD patterns of (a) plain Sn1.0Ag0.5Cu solder and composite solder with various NiO/ZrO2 addition contents, (b) high magnification view of (a).
Fig. 6. Typical microstructure of Sn1.0Ag0.5Cu solder. (a) SEM image of Sn1.0Ag0.5Cu, (b) TEM image of eutectic area. EDS mappings of (c) Sn, (d) Ag, (e) Cu, and (f) their overlay.
Fig. 7. Microstructure evolution of Sn1.0Ag0.5Cu composite solders reinforced with various NiO/ZrO2 addition. (a) 0 mass%, (b) 0.05 mass%, (c) 0.1 mass%, (d) 0.3 mass%, (e) 0.5 mass%, (f) high magnification view of area 1 in (e).
NiO/ZrO2 addition (mass%) | 0 | 0.05 | 0.1 | 0.3 | 0.5 | |
---|---|---|---|---|---|---|
β-Sn average size (μm) | 21.71 | 17.11 | 15.30 | 12.48 | 18.37 | |
IMC average size (μm) | 0.90 | 0.76 | 0.57 | 0.50 | 0.91 |
Table 3. Average size of β-Sn and IMC of composite solders with various NiO/ZrO2 addition.
NiO/ZrO2 addition (mass%) | 0 | 0.05 | 0.1 | 0.3 | 0.5 | |
---|---|---|---|---|---|---|
β-Sn average size (μm) | 21.71 | 17.11 | 15.30 | 12.48 | 18.37 | |
IMC average size (μm) | 0.90 | 0.76 | 0.57 | 0.50 | 0.91 |
Location | Sn | Ag | Cu | Zr | Ni | O |
---|---|---|---|---|---|---|
A | 33.5 | 12.1 | - | 18.2 | 3.1 | 33.1 |
B | 6.4 | - | - | 26.8 | 5.8 | 61.0 |
C | 100.0 | - | - | - | - | - |
Table 4. EDS results of Fig. 7(f) (at. %).
Location | Sn | Ag | Cu | Zr | Ni | O |
---|---|---|---|---|---|---|
A | 33.5 | 12.1 | - | 18.2 | 3.1 | 33.1 |
B | 6.4 | - | - | 26.8 | 5.8 | 61.0 |
C | 100.0 | - | - | - | - | - |
Fig. 9. TEM image and EDS mapping of 0.3 mass% NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder. (a) TEM image. EDS mappings of (b) Zr, (c) Ag, (d) Cu, and (e) their overlay. ZrO2 are marked by the white dashed circles.
Fig. 10. Magnified image of area 1 in Fig.7(a). (a) TEM image of the interface between the reinforcements and solder matrix, (b) SAED patterns of area 1 in Fig. 10(a). EDS mappings of (c) Zr, (d) Ni, (e) Sn, and (f) their overlay.
Fig. 11. TEM and SAED images of 0.3 mass% NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder. (a) TEM image, (b) SAED pattern of area 1 in (a), (c) SAED pattern of area 2 in (a).
Fig. 14. Fracture surfaces of Sn1.0Ag0.5Cu composite solders reinforced with various amounts of added NiO/ZrO2. (a) 0 mass%, (b) 0.05 mass%, (c) 0.1 mass%, (d) 0.3 mass%, (e) 0.5 mass%, (f) high magnification view of area 1 in (e).
Location | Sn | Ag | Cu | Zr | Ni | O |
---|---|---|---|---|---|---|
A | 100 | - | - | - | - | - |
B | 92.3 | 5.2 | 2.5 | - | - | - |
C | 14.2 | - | - | 14.7 | 2.3 | 68.8 |
Table 5. EDS results of Fig. 14 (At. %).
Location | Sn | Ag | Cu | Zr | Ni | O |
---|---|---|---|---|---|---|
A | 100 | - | - | - | - | - |
B | 92.3 | 5.2 | 2.5 | - | - | - |
C | 14.2 | - | - | 14.7 | 2.3 | 68.8 |
Fig. 15. TEM images of NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder. (a) TEM image of the dislocations. (b) high magnification view of area 1 in (a), (c) high magnification view of area 2 in (a).
Fig. 16. SEM images of (a), (b), (c) plain Sn1.0Ag0.5Cu solder, and (d), (e), (f) 0.3 mass% NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder with different thermal aging times. (a) and (d) 168 h; (b) and (e) 504 h; (c) and (f) 1008 h.
Fig. 17. Mechanical properties of plain Sn1.0Ag0.5Cu solder and 0.3 mass% NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder with different thermal aging times. (a) UTS, (b) elongation.
Fig. 18. Fracture surfaces of (a), (b), (c) plain Sn1.0Ag0.5Cu solder, and (d), (e), (f) 0.3 mass% NiO/ZrO2 reinforced Sn1.0Ag0.5Cu composite solder with different thermal aging times. (a) and (d) 168 h; (b) and (e) 504 h; (c) and (f) 1008 h.
[1] |
A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Mater. Sci. Eng. A 578 (2013) 62-71.
DOI URL |
[2] |
Z. Zhu, Y.C. Chan, Z. Chen, C.L. Gan, F. Wu, Mater. Sci. Eng. A 727 (2018) 160-169.
DOI URL |
[3] |
T.T. Chou, C.J. Fleshman, H. Chen, J.G. Duh, J. Mater. Sci. Mater. Electron. 30 (2019) 2342-2350.
DOI URL |
[4] |
P. Zhang, S. Xue, J. Wang, Mater. Des. 192 (2020) 108726.
DOI URL |
[5] |
M. Zhang, K.K. Zhang, F.P. Huo, H.G. Wang, Y. Wang, Materials 12 (2019) 289-301 (Basel).
DOI URL |
[6] |
H. Nishikawa, J.Y. Piao, T. Takemoto, J. Electron. Mater. 35 (2006) 1127-1132.
DOI URL |
[7] |
H. Nishikawa, A. Komatsu, T. Takemoto, J. Electron. Mater. 36 (2007) 1137-1143.
DOI URL |
[8] |
L.C. Tsao, S.Y. Chang, Mater. Des. 31 (2010) 990-993.
DOI URL |
[9] |
G. Chen, H. Peng, V.V. Silberschmidt, Y.C. Chan, C. Liu, F. Wu, J. Alloy. Compd. 685 (2016) 680-689.
DOI URL |
[10] |
A.A. El-Daly, W.M. Desoky, T.A. Elmosalami, M.G. El-Shaarawy, A.M. Abdraboh, Mater. Des. 65 (2015) 1196-1204.
DOI URL |
[11] |
N.M. Nasir, N. Saud, M.A.A. Mohd Salleh, M.N. Derman, M.I.I. Ramli, R.M. Said, Mater. Sci. Forum 819 (2015) 167-172.
DOI URL |
[12] |
Z. Zhao, L. Liu, H.S. Choi, J. Cai, Q. Wang, Y. Wang, G. Zou, Microelectron. Reliab. 60 (2016) 126-134.
DOI URL |
[13] |
X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562 (2013) 25-32.
DOI URL |
[14] |
A.K. Gain, Y.C. Chan, Microelectron. Reliab. 54 (2014) 945-955.
DOI URL |
[15] |
Y. Wen, X. Zhao, Z. Chen, Y. Gu, Y. Wang, Z. Chen, X. Wang, J. Alloy. Compd. 696 (2017) 799-807.
DOI URL |
[16] |
J. Li, X. Ren, Y. Zhang, H. Hou, Ceram. Int. 47 (2021) 1472-1477.
DOI URL |
[17] |
T. Huber, H.P. Degischer, G. Lefranc, T. Schmitt, Compos. Sci. Technol. 66 (2006) 2206-2217.
DOI URL |
[18] |
B.L. Turner-Adomatis, N.N. Thadhani, Mater. Sci. Eng. A 256 (1998) 289-300.
DOI URL |
[19] |
J. Diani, K. Gall, Polym. Eng. Sci. 51 (2011) 509-517.
DOI URL |
[20] |
Y. Wang, P. Shen, R.F. Guo, Z.J. Hu, Q.C. Jiang, Ceram. Int. 43 (2017) 3831-3838.
DOI URL |
[21] |
X.C. Li, J. Stampfl, F.B. Prinz, Mater. Sci. Eng. A 282 (2000) 86-90.
DOI URL |
[22] |
A. Rokanopoulou, P. Skarvelis, G.D. Papadimitriou, Surf. Coat. Technol. 254 (2014) 376-381.
DOI URL |
[23] |
L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermochim. Acta 430 (2005) 155-165.
DOI URL |
[24] | B. Krummheuer, V.M. Axt, T. Kuhn, I. D'Amico, F. Rossi, Phys. Rev. B Condens. Matter Mater. Phys. 71 (2005) 1-13. |
[25] |
S. Gao, N. Zhao, Q. Liu, Y. Li, G. Xu, X. Cheng, J. Yang, J. Alloy. Compd. 779 (2019) 108-114.
DOI URL |
[26] |
N. Li, M. Suzuki, Y. Abe, M. Kawamura, K. Sasaki, H. Itoh, T. Suzuki, Sol. Energy Mater. Sol. Cells 99 (2012) 160-165.
DOI URL |
[27] |
X. Yang, J. Xu, H. Li, X. Cheng, X. Yan, J. Am. Ceram. Soc. 90 (2007) 1953-1955.
DOI URL |
[28] |
Y. Wei, J. Chen, S. Wang, X. Zhong, R. Xiong, L. Gan, Y. Ma, T. Zhai, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 16264-16275.
DOI URL |
[29] |
D. Yoon, Y. Son, H. Cheong, Nano Lett. 11 (2011) 3227-3231.
DOI URL |
[30] | Z. Wang, G. Wang, M. Li, J. Lin, Q. Ma, A. Zhang, Z. Zhong, J. Qi, J. Feng, Carbon 118 (2017) 723-730. |
[31] |
Y. Yan, T. Liu, J. Lin, L. Qiao, J. Tu, S. Qin, J. Cao, J. Qi, J. Alloy. Compd. 883 (2021) 160933.
DOI URL |
[32] |
S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Compos. Sci. Technol. 69 (2009) 1936-1941.
DOI URL |
[33] |
J.L. Qi, J.H. Lin, X. Wang, J.Le Guo, L.F. Xue, J.C. Feng, W.D. Fei, Nano Energy 26 (2016) 657-667.
DOI URL |
[34] |
S.H. Chen, P.P. Jin, G. Schumacher, N. Wanderka, Compos. Sci. Technol. 70 (2010) 123-129.
DOI URL |
[35] |
P. Jin, L. Han, S. Chen, J. Wang, Y. Zhu, Mater. Sci. Eng. A 554 (2012) 48-52.
DOI URL |
[36] |
C. Angeles-Chavez, D.A. Prado-Chay, M.A. Cortes-Jacome, J.A. Antonio-Toledo, Microsc. Microanal. 25 (2019) 2112-2113.
DOI URL |
[37] |
B.Y. Kim, J.W. Yoon, J.K. Kim, Y.C. Kang, J.H. Lee, ACS Appl. Mater. Interfaces 10 (2018) 16605-16612.
DOI URL |
[38] |
M.H. Mamat, N. Parimon, A.S. Ismail, I.B. Shameem Banu, S. Sathik Basha, R. A. Rani, A.S. Zoolfakar, M.F. Malek, A.B. Suriani, M.K. Ahmad, M. Rusop, Mater. Res. Bull. 127 (2020) 110860.
DOI URL |
[39] |
F.Che Ani, A. Jalar, A.A. Saad, C.Y. Khor, M.A. Abas, Z. Bachok, N.K. Othman, Solder. Surf. Mt. Technol. 31 (2019) 109-124.
DOI URL |
[40] |
S. Chellvarajoo, M.Z. Abdullah, Mater. Des. 90 (2016) 499-507.
DOI URL |
[41] |
F. Huo, Z. Jin, D.Le Han, K. Zhang, H. Nishikawa, Mater. Des. 210 (2021) 110038.
DOI URL |
[42] |
C.R. He, W.G. Wang, J. Wang, Y. Xue, J. Power Sources 196 (2011) 7639-7644.
DOI URL |
[43] | Y. Yan, B. Liu, T. Xu, L. Qiao, S. Qin, J. Cao, J. Qi, J. Mater. 8 (2022) 662-668. |
[44] |
Y. Hong, X. You, Y. Zeng, Y. Chen, Y. Huang, W. He, S. Wang, C. Wang, G. Zhou, X. Su, W. Zhang, Vacuum 170 (2019) 108967.
DOI URL |
[45] |
M. Izadi, T. Shahrabi, B. Ramezanzadeh, Appl. Surf. Sci. 440 (2018) 491-505.
DOI URL |
[46] |
W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu, Thin Solid Films 638 (2017) 383-388.
DOI URL |
[47] |
P. Mohanty, R. Mahapatra, P. Padhi, C.H.V.V. Ramana, D.K. Mishra, Nano-Struct. Nano-Objects 23 (2020) 100475.
DOI URL |
[48] |
F. Huo, Y.A. Shen, S. He, K. Zhang, H. Nishikawa, Vacuum 191 (2021) 110370.
DOI URL |
[49] |
Y. Pang, Y. Liu, X. Zhang, M. Gao, H. Pan, Int. J. Hydrogen Energy 38 (2013) 1460-1468.
DOI URL |
[50] |
R. Amade, P. Heitjans, S. Indris, M. Finger, A. Haeger, D. Hesse, J. Photochem. Photobiol. A Chem. 207 (2009) 231-235.
DOI URL |
[51] |
F. Wang, M. O'Keefe, B. Brinkmeyer, J. Alloy. Compd. 477 (2009) 267-273.
DOI URL |
[52] |
B.A. Feldhoff, E. Pippel, J. Woltersdorf, Adv. Eng. Mater. 2 (20 0 0) 471-480.
DOI URL |
[53] |
N. Barreau, T. Painchaud, F. Couzinié-Devy, L. Arzel, J. Kessler, Acta Mater. 58 (2010) 5572-5577.
DOI URL |
[54] |
H. Che, X. Jiang, N. Qiao, X. Liu, J. Alloy. Compd. 708 (2017) 662-670.
DOI URL |
[55] |
Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, Z. Li, J. Alloy. Compd. 627 (2015) 39-47.
DOI URL |
[56] | F.X. Che, E.C. Poh, W.H. Zhu, B.S. Xiong. in: Proceedings of the Electronics Packaging Technology Conference (EPTC), 2007, pp. 713-718. |
[57] |
Z. Yang, W. Zhou, P. Wu, Mater. Sci. Eng. A 590 (2014) 295-300.
DOI URL |
[58] |
Z.Y. Hu, X.W. Cheng, S.L. Li, H.M. Zhang, H. Wang, Z.H. Zhang, F.C. Wang, J. Alloy. Compd. 726 (2017) 240-253.
DOI URL |
[59] |
A. Issariyapat, P. Visuttipitukul, T. Song, A. Bahador, J. Umeda, M. Qian, K. Kondoh, Mater. Charact. 170 (2020) 110700.
DOI URL |
[60] |
O.B. Bembalge, S.K. Panigrahi, J. Alloy. Compd. 766 (2018) 355-372.
DOI URL |
[61] |
Z. Zhang, D.L. Chen, Scr. Mater. 54 (2006) 1321-1326.
DOI URL |
[62] |
S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci, J. Mater. Res. 19 (2004) 1417-1424.
DOI URL |
[63] |
A.M. Gusak, G.V. Lutsenko, K.N. Tu, Acta Mater. 54 (2006) 785-791.
DOI URL |
[64] |
R. Mayappan, I. Yahya, N.A.A. Ghani, H.A. Hamid, J. Mater. Sci. Mater. Electron. 25 (2014) 2913-2922.
DOI URL |
[1] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[2] | Changwu Wan, Jie Jin, Xinyu Wei, Shizhuo Chen, Yi Zhang, Tenglong Zhu, Hongxia Qu. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction [J]. J. Mater. Sci. Technol., 2022, 124(0): 102-108. |
[3] | J.Z. Zhang, L.Y. Zeng, X.W. Zuo, J.F. Wan, Y.H. Rong, N. Min, J. Lu, N.L. Chen. Universality of quenching-partitioning-tempering local equilibrium model [J]. J. Mater. Sci. Technol., 2022, 124(0): 116-120. |
[4] | Kun Wang, Zeyuan Su, Yali Chen, Heng Qi, Ting Wang, Hao Wang, Youqian Zhang, Li Cao, Qian Ye, Fobao Huang, Yu Tong, Hongqiang Wang. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 114(0): 165-171. |
[5] | Jiangshao Yang, Liwen Liu, Daoyi Wang, Jianming Tao, Yanming Yang, Jiaxin Li, Yingbin Lin, Zhigao Huang. Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3-x for MoSe2/MoO3-x@rGO composites [J]. J. Mater. Sci. Technol., 2022, 115(0): 232-240. |
[6] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[7] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
[8] | Zhong Zheng, Xuexi Zhang, Mingfang Qian, Jianchao Li, Muhammad Imran, Lin Geng. Ultra-high strength GNP/2024Al composite via thermomechanical treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 164-172. |
[9] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
[10] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[11] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[12] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[13] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[14] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[15] | Y.T. Zhou, X.H. Shao, S.J. Zheng, X.L. Ma. Structure evolution of the Fe3C/Fe interface mediated by cementite decomposition in cold-deformed pearlitic steel wires [J]. J. Mater. Sci. Technol., 2022, 101(0): 28-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||