J. Mater. Sci. Technol. ›› 2022, Vol. 125: 171-181.DOI: 10.1016/j.jmst.2022.01.036
• Research Article • Previous Articles Next Articles
Kefeng Lia,b, Zhi Wangc, Kaikai Songd, Khashayar Khanlaria,b, Xu-Sheng Yange,f, Qi Shia,b, Xin Liua,b,*(), Xinhua Maoa,b
Received:
2021-08-30
Revised:
2021-12-28
Accepted:
2022-01-09
Published:
2022-04-16
Online:
2022-04-16
Contact:
Xin Liu
About author:
* Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China. E-mail address: liuxin@gdinm.com (X. Liu).Kefeng Li, Zhi Wang, Kaikai Song, Khashayar Khanlari, Xu-Sheng Yang, Qi Shi, Xin Liu, Xinhua Mao. Additive manufacturing of a Co-Cr-W alloy by selective laser melting: In-situ oxidation, precipitation and the corresponding strengthening effects[J]. J. Mater. Sci. Technol., 2022, 125: 171-181.
Fig. 1. Image showing (a) powder size distribution and cumulative distribution of feedstock powder, the inset provides a SEM image showing the morphology of the powder and (b) as-printed parts on a stainless-steel plate.
Fig. 2. Image showing typical microstructure and phase constitution of the as-built CoCrW alloy parts. (a) Molten pool configuration, the white arrow indicates the building direction of the sample, (b) cell structures, (c) XRD pattern of the powder feedstock and as-printed samples, (d) EBSD IPF map, (e) the corresponding phase map with grain boundaries and (f) GND map. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Samples | Co | Cr | W | Si | C | O | N |
---|---|---|---|---|---|---|---|
Powder | Bal. | 27.13 | 9.18 | 1.51 | 0.005 | 0.037 | 0.021 |
As-build | Bal. | 27.48 | 9.89 | 1.55 | 0.008 | 0.09 | 0.051 |
Table 1. The representative chemical composition (wt.%) of both powder and the as-built Co-Cr-W-Si samples.
Samples | Co | Cr | W | Si | C | O | N |
---|---|---|---|---|---|---|---|
Powder | Bal. | 27.13 | 9.18 | 1.51 | 0.005 | 0.037 | 0.021 |
As-build | Bal. | 27.48 | 9.89 | 1.55 | 0.008 | 0.09 | 0.051 |
Fig. 3. Image showing (a) a bright field STEM image of the as-printed samples, the inset gives the SAD patterns obtained from the squared matrix indicating the existence of γ austenite and ε martensite. Two distinct types of nano-particles are recognized as (b) the bright particles, and (c) the dark particles. (c) Some of these two types of particles are found to associate together. The size distributions of (e) the bright particles and (f) the dark particles are statistically analyzed from over 200 particles.
Fig. 4. Image showing (a) the STEM-HAADF image of two types of particles that are associated together and (b) corresponding EDS mapping results showing their distinct chemical compositions.
Fig. 5. Image showing (a) the morphology of a spherical oxide particle, the inset provides a SAD pattern showing its amorphous nature, (b) HRTEM image demonstrating a transition boundary between the amorphous oxide and the austenite matrix. In addition, squared areas in (b) were used to obtain the detailed inverse fast Fourier transform (IFFT) images of (c) amorphous core, (d, e) crystalline structures within the transition boundary and (f) matrix.
Fig. 6. Image showing (a) a bright field TEM image of a precipitate and its corresponding SAD pattern obtained at (b) B//[-111] and (c) B//[-113]. The BCC structure can be confirmed by considering the sample stage crystallographic projection angle.
Phase | Structure | Crystalline parameters | Refs. | ||
---|---|---|---|---|---|
(at.%) | Empty Cell | a (Å) | b (Å) | c (Å) | Empty Cell |
CrCo (σ-phase) | tetragonal | 8.810 | 8.810 | 4.560 | [ |
Co3W2Si (Laves) | h.c.p | 4.734 | 4.734 | 7.722 | [ |
M2T3X (π-phase)* | primitive cubic | 6.360 | 6.360 | 6.360 | [ |
Cr3Co5Si2 (χ-phase) | b.c.c | 8.704 | 8.704 | 8.704 | [ |
M6T-M12T(η-phase) ** | f.c.c | 10.900 | 10.900 | 10.900 | [ |
Precipitate here | b.c.c | 9.326 | 9.326 | 9.326 | This work |
Table 2. Reported ternary phases existing in the Co-Cr alloys and their crystallographic information.
Phase | Structure | Crystalline parameters | Refs. | ||
---|---|---|---|---|---|
(at.%) | Empty Cell | a (Å) | b (Å) | c (Å) | Empty Cell |
CrCo (σ-phase) | tetragonal | 8.810 | 8.810 | 4.560 | [ |
Co3W2Si (Laves) | h.c.p | 4.734 | 4.734 | 7.722 | [ |
M2T3X (π-phase)* | primitive cubic | 6.360 | 6.360 | 6.360 | [ |
Cr3Co5Si2 (χ-phase) | b.c.c | 8.704 | 8.704 | 8.704 | [ |
M6T-M12T(η-phase) ** | f.c.c | 10.900 | 10.900 | 10.900 | [ |
Precipitate here | b.c.c | 9.326 | 9.326 | 9.326 | This work |
Fig. 7. Image showing (a) morphological TEM image of a precipitate, (b) 45° symmetry-related-domains substructure existing inside the precipitate, the inset gives the FTT image indicating a single domain at B//[001], (c) an 8-fold symmetric SAD pattern obtained from image in (a) and (d, e) the schematically indexed pattern and explanation of the 8-fold symmetric SAD pattern presented in (c). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 8. Image showing (a) representative engineering tensile curve, (b, c) morphologies of the fracture surface, where the tensile direction is indicated by the black circle, (d, e) bright-field and dark field images obtained from a region near the fracture area and (f, g) corresponding SAD patterns indicating the occurrence of strain-induced γ-ε transformation during deformation.
Fig. 9. Image showing (a, b) the fracture morphologies obtained by SEM using in-lens detector, note that the oxides inside the dimples are indicated by red arrows and (c, d) the EDS results showing chemical compositions of both nano-oxide and the matrix obtained from circled areas. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 10. Image showing (a, d) microstructures in the vicinity of oxide particles after the occurrence of tensile deformation, (b, e) the transition boundary with SFs/martensite at high-resolution, the inset is the FFT patterns of the transition boundary area, (c, f) the IFFT image reconstructed showing the accumulations of dislocations within the transition boundary, (g-i) schematic illustration of crack initiation within transition boundary of an oxide particle where the dislocations accumulate.
Symbol | Meaning | Value | Unit | Refs. |
---|---|---|---|---|
ky | Hall-Petch coefficient (fcc) | 0.4 | MPa·m0.5 | [58] |
kε | Hall-Petch coefficient (hcp) | 0.14 | MPa·m0.5 | [59] |
σγ0 | Lattice friction Stress (fcc) | 184 | MPa | [55] |
σε0 | Lattice friction Stress (hcp) | 219 | MPa | [54] |
M | Mean orientation factor for polycrystalline Co-Cr | 2.24 | Dimensionless | [60] |
Gγ | Shear modulus (fcc) | 89.9 | GPa | [61] |
Gε | Shear modulus (hcp) | 82 | GPa | [61] |
b | Burgers vector (fcc) | 2.506×10-10 | m | [62] |
a | Lattice constant | 3.545×10-10 | m | [62] |
bε | Burgers vector (hcp) | 2.951×10-10 | m | [63] |
Table 3. Physical meaning and values of different symbols used in the strengthening mechanism calculations.
Symbol | Meaning | Value | Unit | Refs. |
---|---|---|---|---|
ky | Hall-Petch coefficient (fcc) | 0.4 | MPa·m0.5 | [58] |
kε | Hall-Petch coefficient (hcp) | 0.14 | MPa·m0.5 | [59] |
σγ0 | Lattice friction Stress (fcc) | 184 | MPa | [55] |
σε0 | Lattice friction Stress (hcp) | 219 | MPa | [54] |
M | Mean orientation factor for polycrystalline Co-Cr | 2.24 | Dimensionless | [60] |
Gγ | Shear modulus (fcc) | 89.9 | GPa | [61] |
Gε | Shear modulus (hcp) | 82 | GPa | [61] |
b | Burgers vector (fcc) | 2.506×10-10 | m | [62] |
a | Lattice constant | 3.545×10-10 | m | [62] |
bε | Burgers vector (hcp) | 2.951×10-10 | m | [63] |
[1] | J.R. Davis, Handbook of Materials for Medical Devices, ASM International, 2003. |
[2] |
C. Balagna, S. Spriano, M.G. Faga, Mater. Sci. Eng. C 32 (2012) 1868-1877.
DOI URL |
[3] |
K. Yamanaka, M. Mori, A. Chiba, Acta Biomater. 9 (2013) 6259-6267.
DOI PMID |
[4] |
C. Sanz, V. García Navas, J. Mater, Process. Technol. 213 (2013) 2126-2136.
DOI URL |
[5] |
Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, Y. Li, S. Kurosu, H. Mat-sumoto, A. Chiba, Acta Mater. 61 (2013) 1648-1661.
DOI URL |
[6] |
T. Narushima, S. Mineta, Y. Kurihara, K. Ueda, JOM 65 (2013) 489-504.
DOI URL |
[7] |
T. Okuda, M. Fujiwara, J. Mater. Sci. Lett. 14 (1995) 1600-1603.
DOI URL |
[8] |
A. Chiba, N. Nomura, Y. Ono, Acta Mater. 55 (2007) 2119-2128.
DOI URL |
[9] |
S. Karimi, T. Nickchi, A. Alfantazi, Corros. Sci. 53 (2011) 3262-3272.
DOI URL |
[10] |
M.A. Wimmer, J. Loos, R. Nassutt, M. Heitkemper, A. Fischer, Wear 250 (2001) 129-139.
DOI URL |
[11] |
W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mo-hamed, Powder Technol. 327 (2018) 128-151.
DOI URL |
[12] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[13] |
S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Prog. Mater. Sci. 93 (2018) 45-111.
DOI URL |
[14] |
X.Z. Xin, J. Chen, N. Xiang, Y. Gong, B. Wei, Dent. Mater. 30 (2014) 263-270.
DOI PMID |
[15] |
Y.S. Hedberg, B. Qian, Z. Shen, S. Virtanen, I. Odnevall Wallinder, Dent. Mater. 30 (2014) 525-534.
DOI URL |
[16] | https://www.apworks.de/scalmalloy |
[17] |
J.H. Martin, B. Yahata, J. Mayer, R. Mone, E. Stonkevitch, J. Miller, M.R. O'Masta, T. Schaedler, J. Hundley, P. Callahan, T. Pollock, Acta Mater. 200 (2020) 1022-1037.
DOI URL |
[18] |
D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Nature 576 (2019) 91-95.
DOI URL |
[19] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, Philip J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2017) 63.
DOI URL |
[20] |
H.C. Tran, Y.L. Lo, J. Mater, Process. Technol. 255 (2018) 411-425.
DOI URL |
[21] |
C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9 (2018) 1355.
DOI PMID |
[22] | P.A. Hooper, Addit. Manuf. 22 (2018) 548-559. |
[23] |
P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bas-tianoni, B. Rutkowski, A. Czyrska-Filemonowicz, J. Mech. Behav. Biomed. Mater. 60 (2016) 106-117.
DOI PMID |
[24] |
M.V. Upadhyay, M.B.H. Slama, S. Gaudez, N. Mohanan, L. Yedra, S. Hallais, E. Héripré, A. Tanguy, Sci. Rep. 11 (2021) 10393.
DOI PMID |
[25] |
T.R. Smith, J.D. Sugar, C. San Marchi, J.M. Schoenung, Acta Mater. 164 (2019) 728-740.
DOI URL |
[26] |
T.H. Hsu, Y.J. Chang, C.Y. Huang, H.W. Yen, C.P. Chen, K.K. Jen, A.C. Yeh, J. Alloy. Compd. 803 (2019) 30-41.
DOI URL |
[27] |
Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, Scr. Mater. 141 (2017) 94-98.
DOI URL |
[28] |
K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625 (2015) 221-229.
DOI URL |
[29] | Z. Zhu, W. Li, Q.B. Nguyen, X. An, W. Lu, Z. Li, F.L. Ng, S.M. Ling Nai, J. Wei, Addit. Manuf. 35 (2020) 101300. |
[30] |
K. Li, X. Mao, K. Khanlari, K. Song, Q. Shi, X. Liu, J. Alloy. Compd. 825 (2020) 153973.
DOI URL |
[31] | T. Heeling, M. Cloots, K. Wegener, Addit. Manuf. 14 (2017) 116-125. |
[32] |
A.L. Ramirez-Ledesma, E. Lopez-Molina, H.F. Lopez, J.A. Juarez-Islas, Acta Mater. 111 (2016) 138-147.
DOI URL |
[33] |
T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z.G. Yang, Comput. Mater. Sci. 121 (2016) 86-96.
DOI URL |
[34] | Y. Lu, C. Yang, Y. Liu, K. Yang, J. Lin, Addit. Manuf. 30 (2019) 100908. |
[35] |
Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi, Mater. Sci. Eng. A 726 (2018) 21-31.
DOI URL |
[36] |
M. Sage, C. Guillaud, Rev. Met. Paris 47 (1950) 139-145.
DOI URL |
[37] | G.B. Olson, M. Cohen, Metall. Mater. Trans. A 7 (1976) 1897-1904. |
[38] |
H. Okamoto, J. Phase Equilib. Diffus. 29 (2008) 119 -119.
DOI URL |
[39] |
E.I. Gladyshevskii, P.I. Kripyakevich, Y.B. Kuz'ma, J. Struct. Chem. 3 (1962) 402-410.
DOI URL |
[40] |
M. Mori, K. Yamanaka, A. Chiba, J. Mech. Behav. Biomed. Mater. 55 (2016) 201-214.
DOI URL |
[41] | B. Gleeson, Shreir Corros. 1 (2010) 180-194 Oxford. |
[42] |
S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108 (2016) 36-45.
DOI URL |
[43] | E. Le Bourhis, Glass Mechanics and Technology, 2nd ed., Wiley, 2014. |
[44] |
Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470 (2016) 170-178.
DOI URL |
[45] |
K. Saeidi, L. Kvetková, F. Lofaj, Z. Shen, RSC Adv. 5 (2015) 20747-20750.
DOI URL |
[46] |
D. Kong, C. Dong, X. Ni, Z. Liang, X. Li, J. Mater. Sci. Technol. 89 (2021) 133-140.
DOI URL |
[47] |
F. Yan, W. Xiong, E. Faierson, G.B. Olson, Scr. Mater. 155 (2018) 104-108.
DOI URL |
[48] |
J. Talonen, H. Hänninen, Acta Mater. 55 (18) (2007) 6108-6118.
DOI URL |
[49] | B. Kim, E. Boucard, T. Sourmail, D. San Martín, N. Gey, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 68 (2014) 169-178. |
[50] | E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98 (2015) 81-93. |
[51] |
R.L. Fleischer, Acta Metall. Mater. 11 (1963) 203-209.
DOI URL |
[52] |
R.L. Fleischer, Acta Metall. Mater. 10 (1962) 835-842.
DOI URL |
[53] |
Z. Wang, M. Xie, Y. Li, W. Zhang, C. Yang, L. Kollo, J. Eckert, K.G. Prashanth, NPG Asia Mater. 12 (2020) 30.
DOI URL |
[54] | Z. Wang, S.Y. Tang, S. Scudino, Y.P. Ivanov, R.T. Qu, D. Wang, C. Yang, W.W. Zhang, A.L. Greer, J. Eckert, K.G. Prashanth, Addit. Manuf. (2020) 101725. |
[55] |
H. Matsumoto, Y. Koizumi, T. Ohashi, B.S. Lee, Y. Li, A. Chiba, Acta Mater. 64 (2014) 1-11.
DOI URL |
[56] |
F.F. Lavrentev, Mater. Sci. Eng. 46 (1980) 191-208.
DOI URL |
[57] |
Y. Lu, L. Ren, S. Wu, C. Yang, W. Lin, S. Xiao, Y. Yang, K. Yang, J. Lin, Powder Technol. 325 (2018) 289-300.
DOI URL |
[58] |
M. Mori, K. Yamanaka, S. Sato, S. Tsubaki, K. Satoh, M. Kumagai, M. Imafuku, T. Shobu, A. Chiba, Acta Biomater. 28 (2015) 215-224.
DOI URL |
[59] |
M. Lugovy, V. Slyunyayev, M. Brodnikovskyy, Prog. Nat. Sci. 31 (2021) 95-104.
DOI URL |
[60] |
K. Yamanaka, M. Mori, S. Sato, A. Chiba, Sci. Rep. 7 (2017) 10808.
DOI PMID |
[61] | P.M. Sargent, G. Malakondaiah, M.F. Ashby, Scr. Metall. Mater. 17 (1983) 625-629. |
[62] | H. Kuhn, D. Medlin, Materials Handbook, 8 ed., ASM International, 1975. |
[63] |
X.X. Ye, B. Chen, J.H. Shen, J. Umeda, K. Kondoh, J. Alloy. Compd. 709 (2017) 381-393.
DOI URL |
[1] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[2] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[3] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[4] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[5] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[6] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[7] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[8] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[9] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[10] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[11] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[12] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[13] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[14] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[15] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||