J. Mater. Sci. Technol. ›› 2022, Vol. 125: 182-191.DOI: 10.1016/j.jmst.2022.02.040
• Research Article • Previous Articles Next Articles
Qi Zhua,b, Haofei Zhouc, Yingbin Chena, Guang Caoa, Chuang Dengd,*(), Ze Zhanga,*(
), Jiangwei Wanga,b,**(
)
Received:
2022-01-20
Revised:
2022-02-18
Accepted:
2022-02-21
Published:
2022-04-17
Online:
2022-04-17
Contact:
Chuang Deng,Ze Zhang,Jiangwei Wang
About author:
** Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail addresses: jiangwei_wang@zju.edu.cn (J. Wang).Qi Zhu, Haofei Zhou, Yingbin Chen, Guang Cao, Chuang Deng, Ze Zhang, Jiangwei Wang. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals[J]. J. Mater. Sci. Technol., 2022, 125: 182-191.
Fig. 1. Different approaches towards atomistic understanding of GB disconnections. (a) Geometric model of GB disconnection. (b) Atomistic simulation of disconnection on a Σ5[001](013) STGB in Cu. (c) High-resolution TEM image showing the atomic structure of a disconnection core in the Σ41[001](540) tilt GB in high-purity Al bicrystal. (d) Real-time atomistic observation of disconnection motion during shear-coupled migration of a Σ11[1$\bar{1}$0](113) GB in Au bicrystal. (b-d) are reprinted from Refs. [11,16,19], respectively.
Fig. 2. Atomistic dynamics of disconnection nucleation on the Σ11(113) GBs in Au. (a, b) Heterogeneous disconnection nucleation from the surface in an Au bicrystal. The insets show atomic structures of the surface before and after disconnection nucleation. (c, d) Heterogeneous disconnection nucleation from a TJ (shown by the red circle) in nanocrystalline Au. (e, f) MD snapshots showing the homogeneous nucleation of a disconnection dipole in the pristine GB. The hollow arrows indicate the GB migration directions coupled with the subsequent motion of disconnections after nucleation. (g-i) 3D schematics of the respective disconnection nucleation dynamics.
Fig. 3. Quantitative comparison between surface and homogeneous nucleation of disconnections on the Σ11(113) GB. (a, b) Horizontal shear strain (εxz) of the Σ11(113) GB before and after surface nucleation of a single-layer disconnection under shear loading parallel to the GB plane (along the <332> direction). (d, e) Horizontal shear strain evolution associated with the homogeneous nucleation of a double-layer disconnection dipole. (c, f) Atom displacements inside the bicrystal during the surface and homogeneous nucleation of a GB disconnection in (b, e). The displacement vectors have been enlarged by three times in (c, f) for clear demonstration and the black dashed lines delineate the GB planes. (g) Engineering shear stress-strain curves associated with surface and homogeneous disconnection nucleation at 300 K.
Fig. 4. Interaction dynamics of GB disconnections. (a) Dynamic interaction between GB disconnections during the upward migration of Σ11(113) GB (indicated by the hollow arrow). S and D denote single-layer and double-layer disconnections. (b) GB-lattice SF interaction during the downward migration of Σ11(113) GB. (c, d) 3D schematics of the respective dynamic interactions. (e-h) MD simulation snapshots showing the heterogeneous nucleation of disconnections from the GB-dislocation intersection site. An incoming mixed full dislocation b = 1/2<110> was accommodate at the Σ11(113) GB, which triggers the nucleation of single-layer disconnections (bd = 1/22<471>, h = d113) on the GB.
Fig. 5. Quantitative analysis of GB-dislocation interactions at 300 K. (a) Engineering shear stress–strain curves for upward GB migration under [33 $\bar{2}$]-shear loading. (b) Engineering shear stress–strain curves for downward GB migration under [$\bar{3}$ $\bar{3}$2]-shear loading. Pin, Surf, and Acc labels in the plot denote GB pinning, surface nucleation, and dislocation accommodation, respectively. The insets show the final positions of the Σ11(113) GBs in each shear loading, while the dashed lines delineate the initial GB position.
Fig. 6. Disconnection-dominated migration of different GBs in Au. (a) Stress-induced lateral motion of single-layer disconnections on the Σ3 CTB. (b) Lateral motion of a multi-layer disconnection along the Σ3 CTB. (c) Disconnection composition during the migration of a [1$\bar{1}$0]//[001] mixed GB under shear loading.
Fig. 7. Schematic summary of disconnection dynamics. (a) Conceptual map of disconnection-based GB plasticity. (b-d) Schematics of critical disconnection dynamics and their respective contributions to GB plasticity. (b) Disconnection nucleation and propagation. (c) Disconnection interaction. (d) Disconnection-dominated TJ motion in polycrystalline system and the associated GB network evolution.
[1] |
J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Nature 391 (1998) 561-563.
DOI URL |
[2] |
L. Lu, M.L. Sui, K. Lu, Science 287 (2000) 1463-1466.
DOI URL |
[3] |
J.R. Greer, J.T.M.D. Hosson, Prog. Mater. Sci. 56 (2011) 654-724.
DOI URL |
[4] |
T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Science 326 (2009) 1686-1690.
DOI PMID |
[5] |
L.H. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, X. Han, Nat. Commun. 5 (2014) 4402.
DOI URL |
[6] |
K.L. Merkle, L.J. Thompson, F. Phillipp, Phys. Rev. Lett. 88 (2002) 225501.
DOI URL |
[7] |
H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara, T. Sakuma, Acta Mater. 52 (2004) 2349-2357.
DOI URL |
[8] |
J.P. Hirth, R.C. Pond, Acta Mater. 44 (1996) 4749-4763.
DOI URL |
[9] | J.P. Hirth, G. Hirth, J. Wang, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 196-204. |
[10] |
J.M. Howe, R.C. Pond, J.P. Hirth, Prog. Mater. Sci. 54 (2009) 792-838.
DOI URL |
[11] |
J. Han, S.L. Thomas, D.J. Srolovitz, Prog. Mater. Sci. 98 (2018) 386-476.
DOI URL |
[12] | S.L. Thomas, C. Wei, J. Han, Y. Xiang, D.J. Srolovitz, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 8756-8765. |
[13] |
J.W. Cahn, Y. Mishin, A. Suzuki, Acta Mater. 54 (2006) 4953-4975.
DOI URL |
[14] |
L. Wan, S.Q. Wang, Phys. Rev. B 82 (2010) 214112.
DOI URL |
[15] |
A. Rajabzadeh, F. Mompiou, M. Legros, N. Combe, Phys. Rev. Lett. 110 (2013) 265507.
DOI URL |
[16] |
A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe, M. Legros, D. A. Molodov, Acta Mater. 77 (2014) 223-235.
DOI URL |
[17] |
H. Sternlicht, W. Rheinheimer, R.E. Dunin-Borkowski, M.J. Hoffmann, W.D. Kaplan, J. Mater. Sci. 54 (2019) 3694-3709.
DOI |
[18] |
A. Rajabzadeh, M. Legros, N. Combe, F. Mompiou, D.A. Molodov, Philos. Mag. 93 (2013) 1299-1316.
DOI URL |
[19] |
Q. Zhu, G. Cao, J.W. Wang, C. Deng, J.X. Li, Z. Zhang, S.X. Mao, Nat. Commun. 10 (2019) 156.
DOI PMID |
[20] |
Q. Zhu, Q.S. Huang, C. Guang, X.H. An, S.X. Mao, W. Yang, Z. Zhang, H.J. Gao, H.F. Zhou, J.W. Wang, Nat. Commun. 11 (2020) 3100.
DOI PMID |
[21] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[22] |
G. Grochola, S.P. Russo, I.K. Snook, J. Chem. Phys. 123 (2005) 7983.
DOI URL |
[23] |
P. Hirel, Comput. Phys. Commun. 197 (2015) 212-219.
DOI URL |
[24] |
S. Alexander, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
[25] | N. Combe, F. Mompiou, M. Legros, Phys. Rev. Mater. 3 (2019) 060601. |
[26] |
J.D. Rittner, D.N. Seidman, Phys. Rev. B 54 (1996) 6999-7015.
PMID |
[27] |
H. Zheng, A.J. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J.B. Wang, Y.Y. Ma, Y.N. Xia, S.X. Mao, Nat. Commun. 1 (2010) 144.
DOI PMID |
[28] |
W. Liang, S.Q. Wang, Modell. Simul. Mater. Sci. Eng. 17 (2009) 45008-45025.
DOI URL |
[29] |
Q. Zhu, L.Y. Kong, H.M. Lu, Q.S. Huang, Y.B. Chen, Y. Liu, W. Yang, Z. Zhang, F. Sansoz, H.F. Zhou, J.W. Wang, Sci. Adv. 7 (2021) eabe4758.
DOI URL |
[30] |
Y. Mishin, A. Suzuki, B.P. Uberuaga, A.F. Voter, Phys. Rev. B 75 (2007) 224101.
DOI URL |
[31] | Y. Deng, C. Deng, Phys. Rev. Mater. 3 (2019) 010601. |
[32] |
B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, A.P. Sutton, J. Mech. Phys. Solids 84 (2015) 273-292.
DOI URL |
[33] |
N. Combe, F. Mompiou, M. Legros, Acta Mater. 218 (2021) 117222.
DOI URL |
[34] |
J.P. Hirth, R.C. Pond, J. Lothe, Acta Mater. 54 (2006) 4237-4245.
DOI URL |
[35] |
N. Lu, K. Du, L. Lu, H.Q. Ye, Nat. Commun. 6 (2015) 7648.
DOI PMID |
[36] | M.J. McCarthy, T.J. Rupert, Phys. Rev. Mater. 4 (2020) 113402. |
[37] |
Y.B. Chen, S.C. Zhao, Q. Huang, Q.S. Zhu, K.X. Song, H.F. Zhou, J.W. Wang, Int. J. Plast. 148 (2022) 103128.
DOI URL |
[38] |
T.C. Lee, I.M. Robertson, H.K. Birnbaum, Scr. Metall. 23 (1989) 799-803.
DOI URL |
[39] |
L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, Z.F. Zhang, Nat. Commun. 5 (2014) 3536.
DOI PMID |
[40] |
Q. Zhu, S.C. Zhao, C. Deng, X.H. An, K.X. Song, S.X. Mao, J.W. Wang, Acta Mater. 199 (2020) 42-52.
DOI URL |
[41] | L.L. Li, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, Distinct fatigue cracking modes of grain boundaries with coplanar slip systems, Acta Mater. 120 (2016) 120-129. |
[42] |
J.W. Wang, Z. Zeng, M.R. Wen, Q.N. Wang, D.K. Chen, Y. Zhang, P. Wang, H.T. Wang, Z. Zhang, S.X. Mao, T. Zhu, Sci. Adv. 6 (2020) eaay2792.
DOI URL |
[43] |
H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Acta Mater. 85 (2015) 354-361.
DOI URL |
[44] |
J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58 (2010) 2262-2270.
DOI URL |
[45] |
A.H. King, D.A. Smith, Acta Crystallogr. A 36 (1980) 335-343.
DOI URL |
[46] | M. Larranaga, F. Mompiou, M. Legros, N. Combe, Phys. Rev. Mater. 4 (2020) 123606. |
[47] |
F. Mompiou, M. Legros, D. Caillard, Acta Mater 58 (2010) 3676-3689.
DOI URL |
[48] |
A.V. Sisanbaev, R.Z. Valiev, Acta Metall. 40 (1992) 3349-3356.
DOI URL |
[49] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1 (2002) 45-48.
DOI URL |
[50] |
S. Poulat, J.P. Morniroli, L. Priester, Philos. Mag. Lett. 80 (2000) 453-459.
DOI URL |
[51] | L. Priester, Interface Sci. 4 (1997) 205-219. |
[52] |
Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, A.V. Hamza, Nat. Mater. 12 (2013) 697-702.
DOI URL |
[53] |
S.G. Song, Philos. Mag. Lett. 79 (1999) 511-517.
DOI URL |
[54] |
K.L. Merkle, L.J. Thompson, F. Phillipp, Philos. Mag. Lett. 82 (2002) 589-597.
DOI URL |
[55] |
L.H. Wang, K. Du, C.P. Yang, J. Teng, L.B. Fu, Y.Z. Guo, Z. Zhang, X.D. Han, Nat. Commun. 11 (2020) 1167.
DOI URL |
[56] |
S. Lartigue-Korinek, S. Hagege, C. Kisielowski, A. Serra, Philos. Mag. 88 (2008) 1569-1579.
DOI URL |
[57] | K.T. Chen, D.J. Srolovitz, J. Han, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 33077-33083. |
[58] |
N. Combe, F. Mompiou, M. Legros, Phys. Rev. B 93 (2016) 024109.
DOI URL |
[59] |
C.R. Weinberger, A.T. Jennings, K. Kang, J.R. Greer, J. Mech. Phys. Solids 60 (2012) 84-103.
DOI URL |
[60] |
C.Y. Wang, H.C. Duan, C.J. Chen, P. Wu, D.Q. Qi, H.Q. Ye, H.J. Jin, H.L. Xin, K. Du, Matter 3 (2020) 1-13.
DOI URL |
[61] | A.P. Sutton, V. Vitek, Philos. Trans. 309 (1983) 37. |
[62] |
D.L. Olmsted, E.A. Holm, S.M. Foiles, Acta Mater. 57 (2009) 3704-3713.
DOI URL |
[1] | Yun-qi Tong, Wei Li, Qiu-sheng Shi, Lin Chen, Guan-jun Yang. Self-lubricating epoxy-based composite abradable seal coating eliminating adhesive transfer via hierarchical design [J]. J. Mater. Sci. Technol., 2022, 104(0): 145-154. |
[2] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
[3] | Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review [J]. J. Mater. Sci. Technol., 2022, 99(0): 193-206. |
[4] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[5] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[6] | Kesong Miao, Meng Huang, Yiping Xia, Hao Wu, Qing Liu, Guohua Fan. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125(0): 231-237. |
[7] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[8] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[9] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[10] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
[11] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[12] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[13] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[14] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[15] | Guanyu Deng, Xing Zhao, Lihong Su, Peitang Wei, Liang Zhang, Lihua Zhan, Yan Chong, Hongtao Zhu, Nobuhiro Tsuji. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 183-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||