J. Mater. Sci. Technol. ›› 2022, Vol. 125: 192-197.DOI: 10.1016/j.jmst.2022.01.037
• Research Article • Previous Articles Next Articles
Zhaofeng Yanga, Ling Chenb,*(), Huawei Zhua, Yihua Zhua, Hao Jianga,b,*(
), Chunzhong Lia,b
Received:
2021-12-14
Revised:
2022-01-17
Accepted:
2022-01-24
Published:
2022-04-10
Online:
2022-04-10
Contact:
Ling Chen,Hao Jiang
About author:
jianghao@ecust.edu.cn (H. Jiang).Zhaofeng Yang, Ling Chen, Huawei Zhu, Yihua Zhu, Hao Jiang, Chunzhong Li. Stabilizing surface chemistry and texture of single-crystal Ni-rich cathodes for Li-ion batteries[J]. J. Mater. Sci. Technol., 2022, 125: 192-197.
Fig. 1. (a) Schematic illustration of the formation process for the NCMTi; (b) the XRD Rietveld refinement and (c, d) Ti 2p and Ni 2p3/2 XPS spectra for the NCM and the NCMTi with various Ti content.
Fig. 2. (a) SEM image and the particle size distribution (inset), (b) TEM image and the corresponding SAED pattern (inset), (c, d) high-magnification and high-resolution TEM images, and (e-j) cross-sectional SEM image and the corresponding element mappings of the NCMTi-1.
Fig. 3. (a) Initial Coulombic efficiency (ICE), (b) rate capabilities, and (c) cycle performances of the pristine NCM and the NCMTi with different Ti content; (d) voltage hysteresis, (e) charge transfer resistance during cycling, and (f) linear relationship between anodic/cathodic peak current (ip) and the square root of the scan rate (V1/2) for the NCMTi-1 and NCM.
Fig. 4. (a, b) Initial three CV curves at 0.2 mV s - 1 within 2.7-4.3 V and the locally enlarged curves (inset); (c, d) the calculated dQ/dV curves during 100 cycles of the NCM and NCMTi-1.
(c) O and C = O for the NCMTi-1 is 18.5%, much lower than that of NCM (23.8%), indicating reduced parasitic reactions during cycling. Additionally, the structure of the NCMTi-1 and NCM cycled at 1 C for 100 times was examined by XRD (Fig. 5). The crystal structure of the NCMTi-1 is well-maintained without any impurities even after 100 cycles. However, the NCM undergoes serious structural deterioration and harmful phase transition with the appearance of the inert rock salt phase (NiO). Besides, the SEM images of the cycled materials are displayed in Fig. S7. The NCMTi-1 exhibits excellent structural integrity with concurrently enhanced surface and bulk stability, whereas the pristine NCM appears evident cracking. As partial TM ions would dissolve in electrolyte and deposit on the anode side in the repeat charge-discharge processes, causing the loss of active materials and fast capacity fading [37]. Thus, the content of Ni element on the Li anode was quantitatively analyzed by ICP. As depicted in Fig. 5(d), the black area corresponding to the deposited TM elements is smaller for the NCMTi-1 compared with the NCM. Concretely, the mass of Ni deposition is 0.90 μg for the NCMTi-1, much lower than that of the NCM (4.25 μg), implying that the dual-modified tactic could effectively reduce the loss of active substances to prolong the cycle life.
Fig. 5. (a, b) F 1 s and C 1 s XPS spectra, (c) XRD patterns, and (d) the mass of Ni deposition on Li foil and the corresponding digital photos for the NCM and NCMTi-1.
[1] |
W. Li, E.M. Erickson, A. Manthiram, Nat. Energy 5 (2020) 26-34.
DOI URL |
[2] |
H.F. Yu, Y.Q. Cao, L. Chen, Y.J. Hu, X.Z. Duan, S. Dai, C.Z. Li, H. Jiang, Nat. Commun. 12 (2021) 4564.
DOI URL |
[3] |
H. Cha, J. Kim, H. Lee, N. Kim, J. Hwang, J. Sung, M. Yoon, K. Kim, J. Cho, Adv. Mater. 32 (2020) 2003040.
DOI URL |
[4] |
H. Ryu, B. Namkoong, J. Kim, I. Belharouak, C.S. Yoon, Y. Sun, ACS Energy Lett 6 (2021) 2726-2734.
DOI URL |
[5] | G.N. Qian, Y.T. Zhang, L.S. Li, R.X. Zhang, J.M. Xu, Z.J. Cheng, S.J. Xie, H. Wang, Q. L. Rao, Y.S. He, Y.B. Shen, L.W. Chen, M. Tang, Z.F. Ma, Energy Storage Mater 27 (2020) 140-149. |
[6] |
Y.J. Bi, J.H. Tao, Y.Q. Wu, L.Z. Li, Y.B. Xu, E.Y. Hu, B.B. Wu, J.T. Hu, C.M. Wang, J.G. Zhang, Y. Qi, J. Xiao, Science 370 (2020) 1313-1317.
DOI URL |
[7] |
X.M. Fan, X. Ou, W.G. Zhao, Y. Liu, B. Zhang, J.F. Zhang, L.F. Zou, L. Seidl, Y.Z. Li, G.R. Hu, C. Battaglia, Y. Yang, Nat. Commun. 12 (2021) 5320.
DOI URL |
[8] |
X.Y. Hou, K. Ohta, Y. Kimura, Y. Tamenori, K. Tsuruta, K. Amezawa, T. Nakamura, Adv. Energy Mater. 11 (2021) 2101005.
DOI URL |
[9] |
G.N. Qian, H. Huang, F.C. Hou, W.N. Wang, Y. Wang, J.H. Lin, S. Lee, H.F. Yan, Y.S. Chu, P. Pianetta, X.J. Huang, Z.F. Ma, L.S. Li, Y.J. Liu, Nano Energy 84 (2021) 105926.
DOI URL |
[10] |
E. Trevisanello, R. Ruess, G. Conforto, F.H. Richter, J. Janek, Adv. Energy Mater. 11 (2021) 2003400.
DOI URL |
[11] |
X.M. Fan, G.R. Hu, B. Zhang, X. Ou, J.F. Zhang, W.G. Zhao, H.P. Jia, L.F. Zou, P. Li, Y. Yang, Nano Energy 70 (2020) 104450.
DOI URL |
[12] | H.F. Yu, S.L. Wang, Y.J. Hu, G.J. He, L.Q. Bao, I.P. Parkin, H. Jiang, Green Energy Environ 7 (2022) 266-274. |
[13] |
H.W. Zhu, H.F. Yu, Z.F. Yang, H. Jiang, C.Z. Li, Chin. J. Chem. Eng. 37 (2021) 144-151.
DOI URL |
[14] |
J. Xiao, X. Li, K.K. Tang, M.Q. Long, J. Chen, D.D. Wang, H. Gao, H. Liu, Surf. Innov. 10 (2022) 119-127.
DOI URL |
[15] |
R.C. Qian, Y.L. Liu, T. Cheng, P.P. Li, R.M. Chen, Y.C. Lyu, B.K. Guo, ACS Appl. Mater. Interfaces 12 (2020) 13813-13823.
DOI URL |
[16] |
J. Hwang, K. Do, H. Ahn, Chem. Eng. J. 406 (2021) 126813.
DOI URL |
[17] |
Q.Q. Zhang, K. Liu, C. Li, S.S. Tan, L. Li, X.G. Sun, W. Li, X.J. Liu, J.L. Zhang, S. Dai, Nano Energy 86 (2021) 106096.
DOI URL |
[18] |
Y.G. Zou, F.Q. Meng, D.D. Xiao, H. Sheng, W.P. Chen, X.H. Meng, Y.H. Du, L. Gu, J. L. Shi, Y.G. Guo, Nano Energy 87 (2021) 106172.
DOI URL |
[19] |
H.W. Zhu, H.F. Yu, H.B. Jiang, Y.J. Hu, H. Jiang, C.Z. Li, Chem. Eng. Sci. 217 (2020) 115518.
DOI URL |
[20] |
H. Ryu, K. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y. Sun, Adv. Energy Mater. 9 (2019) 1902698.
DOI URL |
[21] |
T.T. Nguyena, U. Kima, C.S. Yoon, Y. Sun, Chem. Eng. J. 405 (2021) 126887.
DOI URL |
[22] |
D.K. Zhang, Y. Liu, L. Wu, L.W. Feng, S.L. Jin, R. Zhang, M.L. Jin, Electrochim. Acta 328 (2019) 135086.
DOI URL |
[23] |
M.M. Rahman, J.Z. Wang, M.F. Hassan, S.L. Chou, D. Wexler, H.K. Liu, J. Power Sources 195 (2010) 4297-4303.
DOI URL |
[24] |
J.N. Liang, Y. Lu, J. Wang, X.P. Liu, K. Chen, W.H. Ji, Y. Zhu, D.L. Wang, J. Energy Chem. 47 (2020) 188-195.
DOI URL |
[25] | R.D. Shannon, Acta Cryst. A (1976) 751-767 32. |
[26] |
C.P. Liang, F.T. Kong, R.C. Longo, C.X. Zhang, Y.F. Nie, Y.P. Zheng, K. Cho, J. Mater. Chem. A 5 (2017) 25303.
DOI URL |
[27] |
J.X. Zheng, Y.K. Ye, T.C. Liu, Y.G. Xiao, C.M. Wang, F. Wang, F. Pan, Acc. Chem. Res. 52 (2019) 2201-2209.
DOI URL |
[28] |
Z.F. Yang, H.F. Yu, Y.J. Hu, H.W. Zhu, Y.H. Zhu, H. Jiang, C.Z. Li, Chem. Eng. Sci. 231 (2021) 116297.
DOI URL |
[29] |
H.F. Yu, H.W. Zhu, Z.F. Yang, M.M. Liu, H. Jiang, C.Z. Li, Chem. Eng. J. 412 (2021) 128625.
DOI URL |
[30] |
J. Leng, J.P. Wang, W.J. Peng, Z.L. Tang, S.M. Xu, Y. Liu, J.X. Wang, Small 17 (2021) 2006869.
DOI URL |
[31] |
J. Lu, Q. Peng, W.Y. Wang, C.Y. Nan, L.H. Li, Y.D. Li, J. Am. Chem. Soc. 135 (2013) 1649-1652.
DOI URL |
[32] |
S. Gao, L.J. Wang, C.Y. Zhou, C.L. Guo, J.L. Zhang, W. Li, Chem. Eng. J. 426 (2021) 131359.
DOI URL |
[33] | F. Wu, J.Y. Dong, L. Chen, L.Y. Bao, N. Li, D.Y. Cao, Y. Lu, R.X. Xue, N. Liu, L. Wei, Z.R. Wang, S. Chen, Y.F. Su, Energy Storage Mater 41 (2021) 495-504. |
[34] |
C. Xu, P.J. Reeves, Q. Jacquet, C.P. Grey, Adv. Energy Mater. 11 (2021) 2003404.
DOI URL |
[35] |
X.Z. Zheng, T. Huang, Y. Pan, W.G. Wang, G.H. Fang, K.N. Ding, M.X. Wu, ACS Appl. Mater. Interfaces 9 (2017) 18758-18765.
DOI URL |
[36] |
M.Q. Xu, L. Zhou, Y.N. Dong, Y.J. Chen, J. Demeaux, A.D. MacIntosh, A. Garsuchb, B.L. Lucht, Energy Environ. Sci. 9 (2016) 1308-1319.
DOI URL |
[37] |
S.J. Wachs, C. Behling, J. Ranninger, J. Möller, K.J.J. Mayrhofer, B.B. Berkes, ACS Appl. Mater. Interfaces 13 (2021) 33075-33082.
DOI URL |
[1] | Kun Liu, Jia-ao Wang, Hongfei Zheng, Xiaodong Sun, Zhimo Yang, Jianzong Man, Xinyu Wang, Juncai Sun. Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage [J]. J. Mater. Sci. Technol., 2022, 104(0): 88-97. |
[2] | Iva Milisavljevic, Guangran Zhang, Yiquan Wu. Solid-state single-crystal growth of YAG and Nd: YAG by spark plasma sintering [J]. J. Mater. Sci. Technol., 2022, 106(0): 118-127. |
[3] | Weili Ren, Tao Zhou, Xiaotan Yuan, Ming Jian, Congjiang Zhang, Biao Ding, Jianchao Peng, Tianxiang Zheng, Yunbo Zhong. Inhibition of Cusp magnetic field on stray-crystal formation in platform region during directionally solidified single-crystal superalloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 183-194. |
[4] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[5] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[6] | Jian Han, Xiaonan Tang, Shaofan Ge, Ying Shi, Chengzhi Zhang, Feng Li, Shuo Bai. Si/C particles on graphene sheet as stable anode for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 259-265. |
[7] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[8] | Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45(0): 49-58. |
[9] | Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45(0): 23-34. |
[10] | Jianlu Pei, Yefan Li, Chong Li, Zumin Wang, Yongchang Liu, Huijun Li. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 162-171. |
[11] | Zhimin Zou, Chunhai Jiang. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials [J]. J. Mater. Sci. Technol., 2019, 35(4): 644-650. |
[12] | Zhaoyang Liu, Zi Wang. Effect of substrate preset temperature on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy [J]. J. Mater. Sci. Technol., 2018, 34(11): 2116-2124. |
[13] | Zou Zhimin, Li Zhaojin, Zhang Hui, Wang Xiaohui, Jiang Chunhai. Copolymerization-Assisted Preparation of Porous LiMn2O4 Hollow Microspheres as High Power Cathode of Lithium-ion Batteries [J]. J. Mater. Sci. Technol., 2017, 33(8): 781-787. |
[14] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
[15] | Iresha R.M. Kottegoda, Xuanwen Gao, Liyanage D.C. Nayanajith, Chinthan H. Manorathne, Jun Wang, Jia-Zhao Wang, Hua-Kun Liu, Yossef Gofer. Comparison of Few-layer Graphene Prepared from Natural Graphite through Fast Synthesis Approach [J]. J. Mater. Sci. Technol., 2015, 31(9): 907-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||