J. Mater. Sci. Technol. ›› 2022, Vol. 125: 198-211.DOI: 10.1016/j.jmst.2022.01.039
• Research Article • Previous Articles Next Articles
S.Y. Liu, J.Y. Zhang(), J. Kuang(
), X.Y. Bao, D.D. Zhang, C.L. Zhang, J.K. Yang, G. Liu, J. Sun
Received:
2021-11-08
Revised:
2022-01-26
Accepted:
2022-01-28
Published:
2022-04-14
Online:
2022-04-14
Contact:
J.Y. Zhang,J. Kuang
About author:
kuangjie@xjtu.edu.cn (J. Kuang).S.Y. Liu, J.Y. Zhang, J. Kuang, X.Y. Bao, D.D. Zhang, C.L. Zhang, J.K. Yang, G. Liu, J. Sun. Designing hetero-structured ultra-strong and ductile Zr-2.5Nb alloys: Utilizing the grain size-dependent martensite transformation during quenching[J]. J. Mater. Sci. Technol., 2022, 125: 198-211.
Nb | Hf | C | N | O |
---|---|---|---|---|
2.44 | 0.34 | 0.01 | 0.005 | 0.07 |
Table 1. Chemical composition of the studied Zr-2.5Nb alloy (wt.%).
Nb | Hf | C | N | O |
---|---|---|---|---|
2.44 | 0.34 | 0.01 | 0.005 | 0.07 |
Fig. 2. EBSD results of the heterogeneous structured Zr-2.5Nb alloys rolled at different temperatures: (a) 815 °C, (b) 835 °C, (c) 860 °C, and (d) 880 °C. (a1)-(d1) are the band-contrast (BC) maps showing the evolution of αp and α' with increasing hot-rolling temperature, (a2)-(d2) are the inverse pole figure (IPF) maps exhibiting the orientation distribution, (a3)-(d3) are the misorientation angle distribution (MAD) histograms showing the evolution of MAD with increasing hot-rolling temperature, and (a4)-(d4) are the intervariant misorientation angle in one self-accommodating group showing that the variants were misoriented by the specific 63.3 ° in one group. (step size: 0.1 μm).
Phase | 815 °C | Empty Cell | 835 °C | Empty Cell | 860 °C | Empty Cell | 880 °C | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | |
αp | 43.1± 3.4 | 1.4 ± 0.4 | 35.5 ± 2.9 | 1.6 ± 0.15 | 20.2 ± 1.4 | 1.5 ± 0.08 | 12.2 ± 1.3 | 1.6 ± 0.04 | |||
Parent β | 56.9 ± 3.5 | 2.4 ± 0.41 | 64.5 ± 2.7 | 2.9 ± 0.36 | 79.8 ± 1.6 | 3.8 ± 0.52 | 87.8 ± 1.7 | 5.5 ± 0.82 | |||
DM | 52.2 ± 2.6 | 0.16 ± 0.01 | 58.9 ± 3.2 | 0.17 ± 0.02 | 59.9 ± 3.4 | 0.17 ± 0.02 | 60.8 ± 3.6 | 0.26 ± 0.03 | |||
TM | 4.7 ± 0.99 | 0.17 ± 0.01 | 5.6 ± 1.2 | 0.18 ± 0.02 | 19.8 ± 1.6 | 0.20 ± 0.02 | 27 ± 1.7 | 0.31 ± 0.03 |
Table 2. Volume fraction and size of αp phase grains, parent β phase grains, dislocation martensite (DM), and twin martensite (TM) lamellae.
Phase | 815 °C | Empty Cell | 835 °C | Empty Cell | 860 °C | Empty Cell | 880 °C | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | Empty Cell | Fraction (%) | Size (μm) | |
αp | 43.1± 3.4 | 1.4 ± 0.4 | 35.5 ± 2.9 | 1.6 ± 0.15 | 20.2 ± 1.4 | 1.5 ± 0.08 | 12.2 ± 1.3 | 1.6 ± 0.04 | |||
Parent β | 56.9 ± 3.5 | 2.4 ± 0.41 | 64.5 ± 2.7 | 2.9 ± 0.36 | 79.8 ± 1.6 | 3.8 ± 0.52 | 87.8 ± 1.7 | 5.5 ± 0.82 | |||
DM | 52.2 ± 2.6 | 0.16 ± 0.01 | 58.9 ± 3.2 | 0.17 ± 0.02 | 59.9 ± 3.4 | 0.17 ± 0.02 | 60.8 ± 3.6 | 0.26 ± 0.03 | |||
TM | 4.7 ± 0.99 | 0.17 ± 0.01 | 5.6 ± 1.2 | 0.18 ± 0.02 | 19.8 ± 1.6 | 0.20 ± 0.02 | 27 ± 1.7 | 0.31 ± 0.03 |
Fig. 3. (a) Inverse pole figure (IPF) map of 860 °C HR sample showing the distribution of 60 ° and 90 ° misorientation of α' martensite variants, (b) part of the shelf-accommodating lamellar group in (a) and corresponding {13 $\bar{4}$1} pole figure (PF) map. (step size: 0.1 μm).
Fig. 4. TEM images of the heterogeneous structured Zr-2.5Nb samples showing the evolution of DM and TM with increasing hot-tolling temperatures: (a) 815 °C, (b) high-resolution electron microscopy image of the twin in (a) along the [1 $\bar{2}$10] zone axis, (c) 835 °C, (d) 860 °C, (e) 880 °C, and (f) evolution of average twin thickness with the increase of HR temperatures. The insert in (a) is the selected area electron diffraction pattern (SADP) of {10 $\bar{1}$1} twins. (TM: twin martensite, DM: dislocation martensite, TB: twin boundary).
Fig. 5. Evolution of (a) size and (b) fraction of DM, TM lamellae, and αp grains with increased HR temperature in the heterogeneous structured Zr-2.5Nb alloys. (DM: dislocation martensite, TM: twin martensite).
Fig. 6. Mechanical behavior of HR heterogeneous structured Zr-2.5Nb alloys. (a) Engineering stress-strain curves (The insert table lists the yield strength, ultimate tensile strength, and total elongation of the present Zr-2.5Nb alloys). (b) True stress-strain and strain hardening rate curves of heterogeneous structure Zr-2.5Nb alloys. Comparison of (c) yield strength and (d) ultimate tensile strength of the present heterogeneous structured Zr-2.5Nb alloys with other reported pure Zr [8,18,[55], [56], [57]] and Zr-Nb alloys [28,29,[58], [59], [60]].
Fig. 7. Typical TEM images of 860 °C HR Zr-2.5Nb samples at the strain of (a, b) 2.5% and (c, d) fracture: dislocations in (a) the αp phase and (b) the α' phase at the strain of 2.5%; dislocations in (c) the αp phase and (d) the α' phase at the strain of fracture.
Fig. 11. Grain size dependence of CRSS for dislocation slip and twinning. Both the prismatic <a> slip and the basal <a> slip cannot alone achieve the uniform deformation of polycrystalline Zr-2.5Nb alloys according to the Von-Mises criterion, thus, twinning or pyramidal <c + a> slip has to be activated to accommodate the deformation process, and the grain size dependence of dislocation slip and twinning makes a critical grain size (dc = 3.3 μm) for the transition of deformation mechanisms. When, d > dc, deformation twinning was activated and twin martensite becomes the main martensite type; when d < dc, the pyramidal <c + a> slip was activated, dislocation can achieve the uniform deformation of Zr-2.5Nb alloys and dislocation martensite becomes the main martensite type.
Fig. 12. Loading-unloading-reloading (LUR) tensile tests of the heterogeneous structured Zr-2.5Nb alloys. (a) Typical LUR curves of 815 °C and 860 °C HR Zr-2.5Nb alloys samples. (b) Schematic for calculating back stress. (c) Flow stress and back stress at different strain levels in 815 °C, 835 °C, 860 °C, 880 °C HR samples. (d) Change of the ratio values of back stress to flow stress in different temperatures HR samples when true strain is 1.5%, 2.5%, 3.5%, and 4.5%, respectively.
Fig. 13. Strength contribution of each component structure in the heterogeneous structured Zr-2.5Nb alloys and the comparison between the calculated and experimental yield strength values. (TM: twin martensite, DM: dislocation martensite)
[1] |
D.H. Ahn, S. Lim, G.G. Lee, Y.B. Chun, J. Nucl. Mater. 523 (2019) 458-471.
DOI URL |
[2] |
S. Cai, M.R. Daymond, R.A. Holt, Acta Mater 60 (2012) 3355-3369.
DOI URL |
[3] |
C.H. Zhang, X.K. Zeng, J.P. Cheng, Y.M. Wang, J. Mater. Sci. Technol. 87 (2021) 101-107.
DOI URL |
[4] |
H.L. Yang, J.J. Shen, Y. Matsukawa, Y. Satoh, S. Kano, Z.S. Zhao, Y.F. Li, F. Li, H. Abe, J. Nucl. Sci. Technol. 52 (2015) 1162-1173.
DOI URL |
[5] |
B.X. Zhou, M.Y. Yao, Z.K. Li, X.M. Wang, J. Zhou, C.S. Long, Q. Liu, B.F. Luan, J. Mater. Sci. Technol. 28 (2012) 606-613.
DOI URL |
[6] | E.N. Stepanova, G.P. Grabovetskaya, I.P. Mishin, D.Y. Bulinko, Mater, Today: Proc 2 (2015) 365-369. |
[7] | R.N. Singh, A.K. Bind, J.B. Singh, J.K. Chakravartty, V.T. Paul, K. Madhusoodnan, S. Suwas, S. Saroja, A.K. Suri, S. Banerjee, Mater. Perform. Charact. 2 (2013) 120-133. |
[8] | H.K. Khandelwal, R.N. Singh, A.K. Bind, S. Sunil, B.N. Rath, J.B. Singh, S. Kumar, J.K. Chakravartty, Mater. Perform. Charact. 3 (2014) 216-238. |
[9] |
X.L. Wu, Y.T. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[10] |
P. Sathiyamoorthi, H.S. Kim, Prog. Mater. Sci. 123 (2020) 100709.
DOI URL |
[11] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[12] |
Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, Y.T. Zhu, Int. J. Plast. 123 (2019) 196-207.
DOI URL |
[13] |
W.J. Lu, K. Yan, X. Luo, Y.T. Wang, L. Hou, P.T. Li, B. Huang, Y.Q. Yang, J. Mater. Sci. Technol. 98 (2022) 197-204.
DOI URL |
[14] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587.
DOI PMID |
[15] |
K.S. Ming, X.F. Bi, J. Wang, Int. J. Plast. 113 (2019) 255-268.
DOI URL |
[16] |
Z. Cao, Z. Cheng, W. Xu, L. Lu, J. Mater. Sci. Technol. 103 (2022) 67-72.
DOI URL |
[17] |
H.K. Park, K. Ameyama, J. Yoo, H. Hwang, H.S. Kim, Mater. Res. Lett. 6 (2018) 261-267.
DOI URL |
[18] |
D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, H.T. Zhang, X.M. Liu, B.N. Wei, X.Y. Zhang, Mater. Des. 34 (2012) 275-278.
DOI URL |
[19] |
M. Zha, H.M. Zhang, X.T. Meng, H.L. Jia, S.B. Jin, G. Sha, H.Y. Wang, Y.J. Li, H.J. Roven, J. Mater. Sci. Technol. 89 (2021) 141-149.
DOI URL |
[20] |
J.T. Fan, L.L. Zhu, J. Lu, T. Fu, A.Y. Chen, Scr. Mater. 184 (2020) 41-45.
DOI URL |
[21] | X.L. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 7197. |
[22] |
M.X. Yang, Y. Pan, F.P. Yuan, Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 4 (2016) 145-151.
DOI URL |
[23] |
W.T. Sun, B. Wu, H. Fu, X.S. Yang, X.G. Qiao, M.Y. Zheng, Y. He, J. Lu, S.Q. Shi, J. Mater. Sci. Technol. 99 (2022) 223-238.
DOI URL |
[24] |
L. Xie, T.L. Huang, L. Zhang, W.Q. Cao, G.L. Wu, X.X. Huang, Mater. Sci. Eng. A 738 (2018) 190-193.
DOI URL |
[25] |
C. Zhang, C.Y. Zhu, T. Harrington, K. Vecchio, Scr. Mater. 154 (2018) 78-82.
DOI URL |
[26] |
Y. Yin, Q.Y. Tan, Q. Sun, W.R. Ren, J.Q. Zhang, S.Y. Liu, Y.G. Liu, M. Bermingham, H.W. Chen, M.X. Zhang, J. Mater. Sci. Technol. 96 (2022) 113-125.
DOI |
[27] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater 165 (2019) 444-458.
DOI |
[28] |
J.W. Zhang, I.J. Beyerlein, W.Z. Han, Phys. Rev. Lett. 122 (2019) 255501.
DOI URL |
[29] |
Z.N. Yang, F.C. Zhang, F.C. Liu, Z.G. Yan, Y.Y. Xiao, Mater. Des. 40 (2012) 400-406.
DOI URL |
[30] | G. Choudhuri, S. Chakraborty, B.K. Shah, D. Srivastava, G.K. Dey, in: Zirconium in nuclear industry International Symposium, Hyderabad, India, January 03, 2015. |
[31] |
Y. Chong, T. Bhattacharjee, J.H. Yi, S.T. Zhao, N. Tsuji, Materialia 8 (2019) 100479.
DOI URL |
[32] |
R. Tewari, D. Srivastava, G.K. Dey, J.K. Chakravarty, S. Banerjee, J. Nucl. Mater. 383 (2008) 153-171.
DOI URL |
[33] |
D. Srivastava, P. Mukhopadhyay, S. Banerjee, S. Ranganathan, Mater. Sci. Eng. A 288 (20 0 0) 101-110.
DOI URL |
[34] |
D. Srivastava, K. Madangopal, S. Banerjee, S. Ranganathan, Acta Metall. Mater. 41 (1993) 3445-3454.
DOI URL |
[35] |
H.L. Yang, S. Kano, Y. Matsukawa, Y.F. Li, J.J. Shen, F. Li, Z.S. Zhao, Y. Satoh, H. Abe, Mater. Des. 104 (2016) 355-364.
DOI URL |
[36] |
D.G. Leo Prakash, M. Preuss, M. Dahlbäck, J. Quinta da Fonseca, Acta Mater 88 (2015) 389-401.
DOI URL |
[37] |
Y.M. Oh, H.J. Yong, K.J. Lee, S.J. Kim, J. Alloy. Compd. 307 (2000) 318-323.
DOI URL |
[38] |
W. Zhou, T.P. Hou, C. Zhang, L. Zhong, K.M. Wu, Metals 8 (2018) 907.
DOI URL |
[39] |
J.J. Sun, T. Jiang, Y.J. Wang, S.W. Guo, Y.N. Liu, Mater. Sci. Eng. A 726 (2018) 342-349.
DOI URL |
[40] |
R. Kondo, N. Nomura, Y.TsutsumiT. Suyalatu, H. Doi, T. Hanawa, Acta Biomater 7 (2011) 4278-4284.
DOI URL |
[41] |
H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51 (2020) 130-136.
DOI URL |
[42] |
R.X. Zheng, J.P. Du, S. Gao, H. Somekawa, S. Ogata, N. Tsuji, Acta Mater 198 (2020) 35-46.
DOI URL |
[43] |
Z.W. Huang, P.L. Yong, H. Zhou, Y.S. Li, Mater. Sci. Eng. A 773 (2020) 138721.
DOI URL |
[44] |
Z.N. Yang, X.B. Wang, F. Liu, F.C. Zhang, L.J. Chai, R.S. Qiu, L.Y. Chen, J. Alloy. Compd. 776 (2019) 242-249.
DOI |
[45] | X.L. Wu, M.X. Yang, F.T. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 14501. |
[46] |
Z.N. Yang, F.C. Zhang, L. Qu, Z.G. Yan, Y.Y. Xiao, R.P. Liu, X.Y. Zhang, Int. J. Plast. 54 (2014) 163-177.
DOI URL |
[47] |
L.J. Chai, B.F. Luan, S.S. Gao, J.W. Chen, Q. Liu, J. Nucl. Mater. 427 (2012) 274-281.
DOI URL |
[48] |
O. Dumas, L. Malet, B. Hary, F. Prima, S. Godet, Acta Mater 205 (2021) 116530.
DOI URL |
[49] |
C. Cochrane, M.A. Gharghouri, M.R. Daymond, Acta Mater 161 (2018) 311-319.
DOI URL |
[50] |
H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater 80 (2014) 478-489.
DOI URL |
[51] | J.L. Liu, G.Z. He, A. Callow, K.X. Li, K.L. Moore, H. Nordin, M. Moody, S. Lozano-Perez, C.R.M. Grovenor, Acta Mater (2021) 117042. |
[52] |
L.J. Chai, T.T. Wang, Y. Ren, B. Song, N. Guo, L.Y. Chen, Met. Mater. Int. 24 (2018) 673-680.
DOI URL |
[53] |
S.C. Wang, M. Aindow, M.J. Starink, Acta Mater 51 (2003) 2485-2503.
DOI URL |
[54] |
L.J. Chai, K. Chen, Y. Zhi, K.L. Murty, L.Y. Chen, Z.N. Yang, J. Alloy. Compd. 748 (2018) 163-170.
DOI URL |
[55] |
D.F. Guo, M. Li, Y.D. Shi, Z.B. Zhang, T.Y. Ma, H.T. Zhang, X.Y. Zhang, Mater. Sci. Eng. A 558 (2012) 611-615.
DOI URL |
[56] |
C. Yuan, R.D. Fu, D.L. Sang, Y.Q. Yao, XY. Zhang, Mater. Lett. 107 (2013) 134-137.
DOI URL |
[57] |
D.F. Guo, Z.B. Zhang, G.S. Zhang, M. Li, Y.D. Shi, T.Y. Ma, X.Y. Zhang, Mater. Sci. Eng. A 591 (2014) 167-172.
DOI URL |
[58] | V.F. Terentyev, S. Dobatkin, S. Nikulin, V.I. Kopylov, D. Prosvirnin, S.O. Rogachev, I. Bannykh, Kov. Mater. 49 (2011) 65-73. |
[59] |
S. Cai, M.R. Daymond, R.A. Holt, M.A. Gharghouri, E.C. Oliver, Mater. Sci. Eng. A 501 (2009) 166-181.
DOI URL |
[60] |
M. Daunys, R. Dundulis, A. Grybenas, P. Krasauskas, Nucl. Eng. Des. 238 (2008) 2536-2545.
DOI URL |
[61] |
L.J. Chai, B. Luan, K.L. Murty, Q. Liu, Mater. Sci. Eng. A 576 (2013) 320-325.
DOI URL |
[62] |
S.W. Lee, J.M. Oh, J.H. Kim, C.H. Park, J.K. Hong, J.T. Yeom, Mater. Sci. Eng. A 807 (2021) 140878.
DOI URL |
[63] |
X.L. An, H. Zhang, S. Ni, X.Q. Ou, X.Z. Liao, M. Song, J. Mater. Sci. Technol. 41 (2020) 76-80.
DOI URL |
[64] |
L.J. Chai, B.F. Luan, D.P. Xiao, M. Zhang, K.L. Murty, Q. Liu, Mater. Des. 85 (2015) 296-308.
DOI URL |
[65] |
M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, R.J. McCabe, Acta Mater 88 (2015) 55-73.
DOI URL |
[66] |
Y. Matsukawa, H.L. Yang, K. Saito, Y. Murakami, T. Maruyama, T. Iwai, K. Murakami, Y. Shinohara, T. Kido, T. Toyama, Z. Zhao, Y.F. Li, S. Kano, Y. Satoh, Y. Nagai, H. Abe, Acta Mater 102 (2016) 323-332.
DOI URL |
[67] |
N. Christodoulou, M.R. Levi, P.A. Turner, E.T.C. Ho, C.K. Chow, Metall. Mater. Trans. A 31 (20 0 0) 409-420.
DOI URL |
[68] |
C.L. Wang, D.P. Yu, Z.Q. Niu, W.L. Zhou, G.Q. Chen, Z.Q. Li, X.S. Fu, Acta Mater 200 (2020) 101-115.
DOI URL |
[69] |
Y. Wang, H. Choo, Acta Mater 81 (2014) 83-97.
DOI URL |
[70] | N. Hashimoto, T.S. Byun, K. Farrell, S.J. Zinkle, J. Nucl. Mater. 329-333 (2004) 947-952. |
[71] | R. Tamura, S. Takeuchi, K. Edagawa, Mater. Sci. Eng. A 309-310 (2001) 552-556. |
[72] |
I.J. Beyerlein, C.N. Tomé, Int. J. Plast. 24 (2008) 867-895.
DOI URL |
[73] |
M. She, X.S. Liu, G.Q. He, Mater. Res. Express 6 (2018) 026530.
DOI URL |
[74] |
Y.T. Zhu, X.L. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[75] |
H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, Q. Liu, Acta Mater 128 (2017) 313-326.
DOI URL |
[76] |
A.Y. Eroshenko, Y.P. Sharkeev, I.A. Glukhov, P.V. Uvarkin, A.M. Mairambekova, A. I. Tolmachev, Russ. Phys. J. 61 (2019) 1899-1907.
DOI URL |
[77] |
A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo, Mater. Sci. Eng. A 527 (2010) 7538-7544.
DOI URL |
[78] | J. Daigne, M. Guttmann, J.P. Naylor, Mater. Sci. Eng. 56 (1982) 1-10. |
[79] |
Y.J. Wang, J.J. Sun, T. Jiang, Y. Sun, S.W. Guo, Y.N. Liu, Acta Mater 158 (2018) 247-256.
DOI URL |
[80] |
D. Srivastava, G. Dey, S. Banerjee, Metall. Mater. Trans. A 26 (1995) 2707-2718.
DOI URL |
[81] |
S. Banerjee, S.J. Vijayakar, R. Krishnan, Acta Mater 26 (1978) 1815-1831.
DOI URL |
[1] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[2] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[3] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[4] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[5] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[6] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[7] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[8] | Yingjie He, Hongyu Xu, Yang Liu, Yihan Chen, Zesheng Ji. Strengthening mechanism of B4C@APC/Al matrix composites reinforced with bimodal-sized particles prepared by hydrothermal carbonized deposition on chips [J]. J. Mater. Sci. Technol., 2022, 123(0): 60-69. |
[9] | Chao Liu, Reynier I. Revilla, Xuan Li, Zaihao Jiang, Shufeng Yang, Zhongyu Cui, Dawei Zhang, Herman Terryn, Xiaogang Li. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel [J]. J. Mater. Sci. Technol., 2022, 124(0): 141-149. |
[10] | Yuhe Huang, Junheng Gao, Vassili Vorontsov, Dikai Guan, Russell Goodall, David Dye, Shuize Wang, Qiang Zhu, W. Mark Rainforth, Iain Todd. Martensitic twinning transformation mechanism in a metastable IVB element-based body-centered cubic high-entropy alloy with high strength and high work hardening rate [J]. J. Mater. Sci. Technol., 2022, 124(0): 217-231. |
[11] | Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124(0): 41-52. |
[12] | Kefeng Li, Zhi Wang, Kaikai Song, Khashayar Khanlari, Xu-Sheng Yang, Qi Shi, Xin Liu, Xinhua Mao. Additive manufacturing of a Co-Cr-W alloy by selective laser melting: In-situ oxidation, precipitation and the corresponding strengthening effects [J]. J. Mater. Sci. Technol., 2022, 125(0): 171-181. |
[13] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[14] | Lizhuang Yang, Bowen Pu, Xiang Zhang, Junwei Sha, Chunnian He, Naiqin Zhao. Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy [J]. J. Mater. Sci. Technol., 2022, 123(0): 13-25. |
[15] | Bingjie Wang, Qianqian Wang, Nan Lu, Xiubing Liang, Baolong Shen. Enhanced high-temperature strength of HfNbTaTiZrV refractory high-entropy alloy via Al2O3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 123(0): 191-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||