J. Mater. Sci. Technol. ›› 2022, Vol. 115: 232-240.DOI: 10.1016/j.jmst.2021.11.023
• Research Article • Previous Articles Next Articles
Jiangshao Yanga,b,c, Liwen Liua, Daoyi Wanga, Jianming Taoa, Yanming Yanga,b, Jiaxin Lia,b, Yingbin Lina,b,c,*(), Zhigao Huanga,b,c,*(
)
Received:
2021-09-23
Revised:
2021-11-06
Accepted:
2021-11-16
Published:
2022-07-10
Online:
2022-01-19
Contact:
Yingbin Lin,Zhigao Huang
About author:
zghuang@fjnu.edu.cn (Z. Huang).Jiangshao Yang, Liwen Liu, Daoyi Wang, Jianming Tao, Yanming Yang, Jiaxin Li, Yingbin Lin, Zhigao Huang. Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3-x for MoSe2/MoO3-x@rGO composites[J]. J. Mater. Sci. Technol., 2022, 115: 232-240.
Fig. 3. (a) TG profiles of the as-prepared powders. High resolution spectra of (b) Mo 3d and (c) O 1s of MoSe2/MoO3-x@rGO. (d) In-depth XPS analysis of Mo 3d spectrum for MoSe2/MoO3-x@rGO.
Fig. 4. The electrochemical performances of the MoSe2, MoSe2@rGO, and MoSe2/MoO3-x@rGO composites as anode materials for PIBs: (a, b) four initial CV profiles at 0.1 mV s-1; (c) cycle stability of 0.2 A g-1; (d) rate performance.
Fig. 5. (a) EIS after 100 cycles at 1 A g-1 of as-prepared electrodes and the corresponding equivalent circuit; (b-e) SEM images of MoSe2 and MoSe2/MoO3-x@rGO electrodes after 50 cycles at 0.2 A g-1.
Fig. 6. Comparison of (a, b) the scan-rate-dependent CV, (c, d) the calculated b value of the anodic peak and cathodic peaks, (e, f) the capacitive charge contributions of various scan rates for MoSe2@rGO and MoSe2/MoO3-x@rGO electrodes.
Fig. 8. (a, b) The calculated work functions of the as-prepared electrodes before and after 50 cycles at 0.2 A g-1, respectively; (c) energy band diagram of MoSe2, amorphous MoO3-x, and graphene; (d) cyclic voltammetry of MoSe2@rGO and MoSe2/MoO3-x@rGO disks; (e) schematic diagrams of the enhanced K-ion migration under the dielectric polarization field originating from amorphous MoO3-x.
[1] |
M. Armand, J.M. Taracon, Nature 451 (2008) 652-657.
DOI URL |
[2] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL |
[3] | L. Fan, K.R. Lin, J. Wang, R.F. Ma, B.G. Lu, Adv. Mater. 30 (2018) e1800804. |
[4] |
M. Sha, L. Liu, H.P. Zhao, Y. Lei, Energy Environ. Mater. 3 (2020) 56-66.
DOI URL |
[5] | B. Wang, F. Yuan, Q.Y. Yu, W. Li, H.L. Sun, L.P. Zhang, D. Zhang, Q.J. Wang, F.L. Lai, W. Wang, Energy Storage Mater 38 (2021) 329-337. |
[6] |
H.B. Ding, J. Zhou, A.M. Rao, B.G Lu, Natl. Sci. Rev. 8 (2021) nwaa276.
DOI URL |
[7] |
S.H. Qi, J.W. Deng, W.C. Zhang, Y.Z. Feng, J.M. Ma, Rare Met 39 (2020) 970-988.
DOI URL |
[8] |
H.J. Zhu, T.T. Liu, L. Peng, W.T. Yao, F.Y. Kang, J. Shu, C. Yang, Nano Energy 82 (2021) 105784.
DOI URL |
[9] |
J.M. Ge, L. Fan, J. Wang, Q.F. Zhang, Z.M. Liu, E.J. Zhang, Q. Liu, X.Z. Yu, B.A. Lu, Adv. Energy Mater. 8 (2018) 1801477.
DOI URL |
[10] |
Y.H. Xie, Y. Chen, L. Liu, P. Tao, M.P. Fan, N. Xu, X.W. Shen, C.L. Yan, Adv. Mater. 29 (2017) 1702268.
DOI URL |
[11] |
Y.H. Wu, Q.C. Zhang, Y. Xu, R. Xu, L. Li, Y.L. Li, C.L. Zhang, H.P. Zhao, S. Wang, U. Kaiser, Y. Lei, ACS Appl. Mater. Interfaces 13 (2021) 18838-18848.
DOI URL |
[12] | M.Z. Ma, S.P. Zhang, Y. Yao, H.Y. Wang, H.J. Huang, R. Xu, J.W. Wang, X.F. Zhou, W.J. Yang, Z.Q. Peng, X.J. Wu, Y.L. Hou, Y. Yu, Adv. Mater. 32 (2020) e2000958. |
[13] |
H.W. Huang, J. Cui, G.X. Liu, R. Bi, L. Zhang, ACS Nano 13 (2019) 3448-3456.
DOI URL |
[14] | W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng, J.H. Zhou, K. Wang, C. Yang, Y. Yang, S.J. Guo, Adv. Mater. 30 (2018) e1801812. |
[15] |
Y.Y. Yi, Z.T. Sun, C. Li, Z.N. Tian, C. Lu, Y.L. Shao, J. Li, J.Y Sun, Z.F. Liu, Adv. Func. Mater. 30 (2019) 1903878.
DOI URL |
[16] |
Y.L. Liu, Y.J. Zhai, N.N. Wang, Y.H. Zhang, Z.X. Lu, P. Xue, L. Bai, M.Q. Guo, D. Huang, Z.C. Bai, ChemistrySelect 5 (2020) 2412-2418.
DOI URL |
[17] |
Q. Jiang, S. Hu, L. Wang, Z. Huang, H.J. Yang, X. Han, Y. Li, C. Lv, Y.S. He, T. Zhou, J. Hu, Appl. Surf. Sci. 505 (2020) 144573.
DOI URL |
[18] |
J. Yang, J.D. Luo, Y. Kuang, Y.C. He, P.P. Wen, L.L. Xiong, X.Y. Wang, Z.H. Yang, ACS Appl. Mater. Interfaces 13 (2021) 2072-2080.
DOI URL |
[19] | W. Zhang, Y.G. Sun, H.Q. Deng, J.M. Ma, Y. Zeng, Z.Q. Zhu, Z.S. Lv, H.R. Xia, X. Ge, S.K. Cao, Y. Xiao, S.B. Xi, Y.H. Du, A.M. Cao, X.D. Chen, Adv. Mater. (2020) 2000496. |
[20] |
L.X. Hong, J.M. Tao, Z.R. Yan, Y.B. Chi, Y.M. Yang, J.X. Li, Y.B. Lin, Y.Y. Li, Z.G. Huang, Chem. Eng. J. 407 (2021) 126306.
DOI URL |
[21] | T. Teranishi, N. Katsuji, K. Chajima, S. Yasuhara, M. Inohara, Y. Yoshikawa, S. Ya-sui, H. Hayashi, A. Kishimoto, M. Itoh, Adv.Electron.Mater. 4(2018)1700413. |
[22] |
R. Bissessur, H. Xu, Mater. Chem. Phys. 117 (2009) 335-337.
DOI URL |
[23] |
Q.R. Pan, P.J. Zuo, S.F. Lou, T.S. Mu, C.Y. Du, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, G.P. Yin, J. Alloy. Compd. 723 (2017) 434-440.
DOI URL |
[24] |
Q.F. Zhang, X.L. Cheng, C.X. Wang, A.M. Rao, B.A. Lu, Energy Environ. Sci. 14 (2021) 965-974.
DOI URL |
[25] |
W.Z. Wu, C.Y. Niu, Q.Y. Tian, W. Liu, G. Niu, X.L. Zheng, C. Li, Y. Jia, C. Wei, Q. Xu, Chem. Commun. 56 (2020) 14701-14704.
DOI URL |
[26] |
Z. Liu, J. Han, L. Zhao, Y.W. Wu, H.X. Wang, X.Q. Pei, M.X. Xu, Q. Lu, Y.P. Yang, Appl. Catal. A 587 (2019) 117263.
DOI URL |
[27] |
Q. Su, X.X. Cao, T. Yu, X.Z. Kong, Y.P. Wang, J. Chen, J.D. Lin, X.F. Xie, S.Q. Liang, A.Q Pan, J. Mater. Chem. A 7 (2019) 22871-22878.
DOI URL |
[28] | Y.A. Xu, X.F. Liu, H. Su, S. Jiang, J.M. Zhang, D. Li, Energy Environ. Mater. 7 (2021) 22871. |
[29] |
X. Cai, X.G. Sang, Y. Song, D. Guo, X.X. Liu, X. Sun, ACS Appl. Mater. Interfaces 12 (2020) 48565-48571.
DOI URL |
[30] |
S.J. Xie, H.K. Zhang, G.D. Liu, X.J. Wu, J.C. Lin, Q.H. Zhang, Y. Wang, Chin. J. Catal. 41 (2020) 1125-1131.
DOI URL |
[31] |
J.H. Kim, J.K. Dash, J. Kwon, C. Hyun, H. Kim, E. Ji, G.H. Lee, 2D Mater 6 (2018) 015016.
DOI URL |
[32] |
S.K. Chong, X.D. Wei, Y.F. Wu, L. Sun, C.Y. Shu, Q.B. Lu, Y.Z. Hu, G.Z. Cao, W. Huang, ACS Appl. Mater. Interfaces 13 (2021) 13158-13169.
DOI URL |
[33] |
W. Liu, J.J. Yuan, Y.C Hao, H. Maleki Kheimeh Sari, J.J. Wang, A. Kakimov, W. Xiao, J. Qin, W.B. Li, C.H. Xie, J.H. Hu, J.H. Peng, X.F. Li, J. Mater. Chem. A 8 (2020) 23395-23403.
DOI URL |
[34] |
D.X. Cao, H.Y. Gu, C. Xie, B.B. Li, H.K. Wang, C.M. Niu, J. Colloid Interface Sci. 504 (2017) 230-237.
DOI URL |
[35] |
H.Y. Wu, S.Q. Zhou, C.H. Tseng, M.L. Qin, A. Shiue, A.M. Chu, Z.Q. Cao, B.R. Jia, X.H. Qu, J. Am. Ceram. Soc. 104 (2020) 1102-1109.
DOI URL |
[36] |
J.W. Kang, Q.M. Su, H.G. Feng, P. Huang, G.H. Du, B.S. Xu, Electrochim. Acta 301 (2019) 29-38.
DOI URL |
[37] |
J.M. Ge, B. Wang, J. Wang, Q.F. Zhang, B.G. Lu, Adv. Energy Mater. 10 (2019) 1903277.
DOI URL |
[38] |
X.Q. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J.W. Li, B.W. Byles, E. Pomerantseva, G.X. Wang, Y. Gogotsi, Nano Energy 26 (2016) 513-523.
DOI URL |
[39] |
X.X. Ran, J.M. Tao, Z.Y. Chen, Z.R. Yan, Y.M. Yang, J.X. Li, Y.B. Lin, Z.G. Huang, Electrochim. Acta 353 (2020) 135959.
DOI URL |
[40] |
S.Q. Hao, C. Wolverton, J. Phys. Chem. C 117 (2013) 8009-8013.
DOI URL |
[41] |
A. Kahn, Mater. Horiz. 3 (2016) 7-10.
DOI URL |
[42] |
G.Z. Liu, X.G. Yuan, Y.M. Yang, J.M. Tao, Y.B. Chi, L.X. Hong, Z.Y. Lin, Y.B. Lin, Z.G. Huang, J. Alloy. Compd. 780 (2019) 948-958.
DOI URL |
[43] |
P.J. Ko, A. Abderrahmane, N.H. Kim, A. Sandhu, Semicond. Sci. Tech. 32 (2017) 065015.
DOI URL |
[44] | B.R. Borodin, F.A. Benimetskiy, M.S. Dunaevskiy, V.A. Sharov, A.N. Smirnov, V.Y. Davydov, E. Lähderanta, S.P. Lebedev, A.A. Lebedev, P.A. Alekseev, Semi-cond. Sci. Technol. 34 (2019) 125007. |
[45] |
M.H. Braga, J.E. Oliveira, A.J. Murchison, J.B. Goodenough, Appl. Phys. Rev 7 (2020) 011406.
DOI URL |
[46] |
D. Kalaev, A. Rothschild, I. Riess, RSC Adv. 7 (2017) 38059-38068.
DOI URL |
[1] | Yutong Shi, Weiyan Lu, Wenhai Sun, Suode Zhang, Baijun Yang, Jianqiang Wang. Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment [J]. J. Mater. Sci. Technol., 2022, 105(0): 203-213. |
[2] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[3] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[4] | Jing Wei, Peng Guo, Hao Li, Peiling Ke, Aiying Wang. Insights on high temperature friction mechanism of multilayer ta-C films [J]. J. Mater. Sci. Technol., 2022, 97(0): 29-37. |
[5] | Chong Peng, Hu Tang, Changjian Geng, Pengjie Liang, Biao Wan, Yujiao Ke, Yuefeng Wang, Peng Jia, Wenfeng Peng, Lina Qiao, Kenan Li, Xiaohong Yuan, Yucheng Zhao, Mingzhi Wang. Extraordinary toughening enhancement in nonstoichiometric vanadium carbide [J]. J. Mater. Sci. Technol., 2022, 97(0): 176-181. |
[6] | Shuhua Hao, Yupeng Xing, Peiyu Hou, Gang Zhao, Jinzhao Huang, Shipeng Qiu, Xijin Xu. Rational construction of phosphate layer to optimize Cu-regulated Fe3O4 as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries [J]. J. Mater. Sci. Technol., 2022, 108(0): 133-141. |
[7] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-etropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[8] | Yikun Zhang, Jian Zhu, Shuo Li, Jiang Wang Zhongming Ren. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy [J]. J. Mater. Sci. Technol., 2022, 102(0): 66-71. |
[9] | Yunwei Liu, Zelin Chen, Chang Liu, Jinfeng Zhang, Wenbin Hu, Yida Deng. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2022, 98(0): 205-211. |
[10] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[11] | Aobo Hu, Shuizhou Cai. Spatial phase structure and oxidation process of Al-W alloy powder with high sphericity [J]. J. Mater. Sci. Technol., 2022, 114(0): 62-72. |
[12] | Jijun Zhang, Zexuan Wang, Jiawei Li, Yaqiang Dong, Aina He, Guoguo Tan, Qikui Man, Bin Shen, Junqiang Wang, Weixing Xia, Jun Shen, Xin-min Wang. Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding [J]. J. Mater. Sci. Technol., 2022, 96(0): 11-20. |
[13] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
[14] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[15] | Kwonwoo Oh, Kyungeun Jung, Jaehak Shin, Sunglim Ko, Man-Jong Lee. Novel Intense-pulsed-light synthesis of amorphous SnO2 electron-selective layers for efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 171-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||