J. Mater. Sci. Technol. ›› 2022, Vol. 115: 241-250.DOI: 10.1016/j.jmst.2021.12.007
• Research Article • Previous Articles Next Articles
Lin Chen, Guo-Hui Meng, Chang-Jiu Li, Guan-Jun Yang()
Received:
2021-12-11
Revised:
2021-12-28
Accepted:
2021-12-29
Published:
2022-07-10
Online:
2022-01-26
Contact:
Guan-Jun Yang
About author:
*E-mail address: ygj@mail.xjtu.edu.cn (G.-J. Yang).Lin Chen, Guo-Hui Meng, Chang-Jiu Li, Guan-Jun Yang. Critical scale grain size for optimal lifetime of TBCs[J]. J. Mater. Sci. Technol., 2022, 115: 241-250.
Fig. 4. Dependence of normalized energy release rate g on oxidation time t (a) and dependence of service lifetime tcr on grain size d for interfacial delamination (b).
Fig. 9. Dependence of normalized strain εavg x/ε0 x on d/h with varied relief coefficient ξ (a) and on scale thickness h with varied grain size d (b).
Fig. 10. Dependence of normalized energy release rate g on scale thickness h with varied grain size d: (a) with large scale thickness range, (b) during the early growth of TGO, and (c) the critical thickness hcr at the peak of ERR under different grain sizes d.
Fig. 11. Dependence of normalized energy release rate g on oxidation time t with varied relief coefficient ξ during the whole service of TBCs (a) and during the early growth of Al2O3-TGO (b).
Fig. 12. Dependence of normalized energy release rate g on oxidation time t with varied ζ during the whole service of TBCs (a) and during the early growth of Al2O3-TGO (b).
Fig. 15. Surface morphologies of pre-oxidized bond coat with different Al2O3 scale grain sizes: (a) ~500 nm and (b) ~10 μm. Chanel cracking widely occurred in Al2O3 grains larger than ~4 μm.
[1] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[2] |
Q.M. Liu, S.Z. Huang, A.J. He, J. Mater. Sci. Technol. 35 (2019) 2814-2823.
DOI URL |
[3] |
C.G. Zhang, Y. Fan, J.L. Zhao, G. Yang, H.F. Chen, L.M. Zhang, Y.F. Gao, B. Liu, J. Adv. Ceram. 10 (2021) 520-528.
DOI URL |
[4] |
H.M. Xiang, Y. Xing, F.Z. Dai, H.J. Wang, L. Su, L. Miao, G.J. Zhang, Y.G. Wang, X.W. Qi, L. Yao, H.L. Wang, B. Zhao, J.Q. Li, Y.C. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[5] |
J. Che, X. Liu, X. Wang, Q. Zhang, E. Zhang, G. Liang, S. Zhang, J. Mater. Sci. Technol. 102 (2022) 174-185.
DOI URL |
[6] |
C. Li, C.L. Ren, Y. Ma, J. He, H.B. Guo, J. Mater. Sci. Technol. 72 (2021) 144-153.
DOI URL |
[7] |
H. Dong, G.J. Yang, C.X. Li, X.T. Luo, C.J. Li, J. Am. Ceram. Soc. 97 (2014) 1226-1232.
DOI URL |
[8] |
K. Kim, D. Kim, K. Park, J. Yun, C.-.S. Seok, J. Mater. Sci. Technol. 105 (2022) 45-56.
DOI URL |
[9] |
Z.Y. Wei, H.N. Cai, Ceram. Int. 46 (2020) 2220-2237.
DOI URL |
[10] |
Z.Y. Wei, H.N. Cai, G.H. Meng, A. Tahir, W.W. Zhang, Ceram. Int. 46 (2020) 1532-1544.
DOI URL |
[11] |
Y. Li, C.J. Li, Q. Zhang, G.J. Yang, C.X. Li, J. Therm. Spray Technol. 19 (2010) 168-177.
DOI URL |
[12] |
M. Matsumoto, K. Hayakawa, S. Kitaoka, H. Matsubara, H. Takayama, Y. Kagiya, Y. Sugita, Mater. Sci. Eng. A-Struct. 441 (2006) 119-125.
DOI URL |
[13] |
B.Y. Zhang, G.H. Meng, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 397 (2017) 125-132.
DOI URL |
[14] |
S. Kitaoka, T. Kuroyama, M. Matsumoto, R. Kitazawa, Y. Kagawa, Corros. Sci. 52 (2010) 429-434.
DOI URL |
[15] |
G.H. Meng, H. Liu, M.J. Liu, T. Xu, G.J. Yang, C.X. Li, C.J. Li, Corros. Sci. 163 (2020) 108275.
DOI URL |
[16] |
G.H. Meng, H. Liu, P.Y. Xu, G.R. Li, T. Xu, G.J. Yang, C.J. Li, Corros. Sci. 170 (2020) 108653.
DOI URL |
[17] | D.J. Young, in: High Temperature Oxidation and Corrosion of Metals, Elsevier, Oxford, 2008, pp. 17-29. |
[18] |
B.Y. Zhang, G.J. Yang, C.X. Li, C.J. Li, Appl. Surf. Sci. 406 (2017) 99-109.
DOI URL |
[19] |
S. Kitaoka, T. Matsudaira, M. Wada, Mater. Trans. 50 (2009) 1023-1031.
DOI URL |
[20] |
M. Wada, T. Matsudaira, S. Kitaoka, J. Ceram. Soc. Jpn. 119 (2011) 832-839.
DOI URL |
[21] |
T. Ogawa, S. Kitaoka, A. Kuwabara, C.A.J. Fisher, H. Moriwake, Scr. Mater. 100 (2015) 66-69.
DOI URL |
[22] |
A.H. Heuer, T. Nakagawa, M.Z. Azar, P.B. Hovis, J.L. Smialek, B. Gleeson, N.D.M. Hine, H. Guhl, H.S. Lee, P. Tangney, W.M.C. Foulkes, M.W. Finnis, Acta Mater 61 (2013) 6670-6683.
DOI URL |
[23] |
A.H. Heuer, M.Z. Azar, Scr. Mater. 102 (2015) 15-18.
DOI URL |
[24] |
M. Wada, T. Matsudaira, N. Kawashima, M. Takeuchi, D. Yokoe, T. Ogawa, T. Kato, M. Takata, S. Kitaoka, Acta Mater 201 (2020) 373-385.
DOI URL |
[25] |
T. Matsudaira, M. Wada, N. Kawashima, M. Takeuchi, D. Yokoe, T. Kato, M. Takata, S. Kitaoka, J. Eur. Ceram. Soc. 41 (2021) 3150-3160.
DOI URL |
[26] |
J.P. Hirth, J. Wang, C.N. Tome, Prog. Mater. Sci. 83 (2016) 417-471.
DOI URL |
[27] |
D.R. Clarke, Acta Mater 51 (2003) 1393-1407.
DOI URL |
[28] | J.W. Hutchinson, Z. Suo, Adv. Appl. Mech. 29 (1992) 63-191. |
[29] |
L. Chen, G.J. Yang, J. Adv. Ceram. 7 (2018) 17-29.
DOI URL |
[30] |
L. Chen, G.J. Yang, C.X. Li, J. Therm. Spray Technol. 26 (2017) 315-326.
DOI URL |
[31] |
H. Yin, G. Paulino, W. Buttlar, Int. J. Fracture 153 (2008) 39-52.
DOI URL |
[32] |
L. Chen, G.J. Yang, J. Therm. Spray Technol. 26 (2017) 1168-1182.
DOI URL |
[33] |
L. Chen, G.J. Yang, C.X. Li, C.J. Li, J. Therm. Spray Technol. 26 (2017) 302-314.
DOI URL |
[34] |
C.V. Thompson, Annu. Rev. Mater. Sci. 30 (2000) 159-190.
DOI URL |
[35] |
T.K. Bhandakkar, E. Chason, H.J. Gao, Int. J. Appl. Mech. 1 (2009) 1-19.
DOI URL |
[36] |
T. Matsudaira, M. Wada, T. Saitoh, S. Kitaoka, Acta Mater 58 (2010) 1544-1553.
DOI URL |
[37] |
T. Matsudaira, M. Wada, T. Saitoh, S. Kitaoka, Acta Mater 59 (2011) 5440-5450.
DOI URL |
[38] |
T. Matsudaira, M. Wada, S. Kitaoka, J. Am. Ceram. Soc. 96 (2013) 3243-3251.
DOI URL |
[39] |
Q. Wu, Z.Y. Yu, Y. Wang, D. Diercks, B.P. Gorman, J.M. Rickman, M.P. Harmer, H.M. Chan, J. Am. Ceram. Soc. 104 (2021) 514-523.
DOI URL |
[40] |
Q. Wu, H.M. Chan, J.M. Rickman, M.P. Harmer, J. Am. Ceram. Soc. 98 (2015) 3346-3351.
DOI URL |
[1] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[2] | Mi Yan, Shengbo Yi, Xiuyuan Fan, Zhenghua Zhang, Jiaying Jin, Guohua Bai. High-frequency MnZn soft magnetic ferrite by engineering grain boundaries with multiple-ion doping [J]. J. Mater. Sci. Technol., 2021, 79(0): 165-170. |
[3] | Fengyou Wang, Jinyue Du, Yuhong Zhang, Meifang Yang, Donglai Han, Lili Yang, Lin Fan, Yingrui Sui, Yunfei Sun, Jinghai Yang. Upgraded antisolvent engineering enables 2D@3D quasi core-shell perovskite for achieving stable and 21.6% efficiency solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 21-30. |
[4] | Shuo Li, Longfei Ma, Jinkui Fan, Jianping Yang, Qiang Zheng, Baoru Bian, Jian Zhang, Juan Du. High energy product of isotropic bulk Sm-Co/α-Fe(Co) nanocomposite magnet with multiple hard phases and nanoscale grains [J]. J. Mater. Sci. Technol., 2021, 88(0): 183-188. |
[5] | Pan Xie, Shucheng Shen, Cuilan Wu, Jiehua Li, Jianghua Chen. Unusual relationship between impact toughness and grain size in a high-manganese steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 122-132. |
[6] | Yi Yang, Bohua Zhang, Zhichao Meng, Lei Qu, Hao Wang, Sheng Cao, Jianan Hu, Hao Chen, Songquan Wu, Dehai Ping, Geping Li, Lai-Chang Zhang, Rui Yang, Aijun Huang. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy [J]. J. Mater. Sci. Technol., 2021, 91(0): 58-66. |
[7] | Fang Wang, Liu He, Xiangguo Zeng, Zhongpeng Qi, Bo Song, Xin Yang. Triaxial tension-induced damage behavior of nanocrystalline NiTi alloy and its dependence on grain size [J]. J. Mater. Sci. Technol., 2021, 77(0): 90-99. |
[8] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[9] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[10] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[11] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
[12] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[13] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[14] | Yangtao Zhou, Yuning Zan, Shijian Zheng, Xiaohong Shao, Qianqian Jin, Bo Zhang, Quanzhao Wang, Bolv Xiao, Xiuliang Ma, Zongyi Ma. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2 [J]. J. Mater. Sci. Technol., 2019, 35(9): 1825-1830. |
[15] | Xumin Zhu, Congyang Gong, Yun-Fei Jia, Runzi Wang, Chengcheng Zhang, Yao Fu, Shan-Tung Tu, Xian-Cheng Zhang. Influence of grain size on the small fatigue crack initiation and propagation behaviors of a nickel-based superalloy at 650 °C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1607-1617. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||