J. Mater. Sci. Technol. ›› 2022, Vol. 115: 251-255.DOI: 10.1016/j.jmst.2021.10.047
• Letter • Previous Articles
Yue Gaoa, Jinting Jiub,*(), Chuantong Chenc, Katsuaki Suganumac, Rong Suna,d, Zhi-Quan Liua,d,*(
)
Revised:
2021-10-12
Published:
2022-07-10
Online:
2022-07-15
Contact:
Jinting Jiu,Zhi-Quan Liu
About author:
zqliu@siat.ac.cn (Z.-Q. Liu)Yue Gao, Jinting Jiu, Chuantong Chen, Katsuaki Suganuma, Rong Sun, Zhi-Quan Liu. Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test[J]. J. Mater. Sci. Technol., 2022, 115: 251-255.
Fig. 1. Cross-section observation of Cu sinter joints at the as-bonded state ((a) and (b), (b) is the enlarged micrograph of a), stored at 200 °C/ambient for 1000 h (c), and 200 °C/vacuum for 1000 h (d), (e) and (f) were the SE and the element overlay obtained by EPMA of Cu sinter joint stored at 200 °C/ambient for 1000 h.
Fig. 2. Shear strength of various Cu sinter joints before and after thermal storage of 200 °C/ambient for 100 h (a); the shear strength evolution of Cu sinter joints obtained at 300 °C during thermal storage test under ambient (black square) and vacuum (red circle) conditions (b).
Fig. 3. Fracture observation of Cu sinter joints at the as-bonded state (a), stored in 200 °C/ambient for 100 h (b) and 1000 h (c), and stored in 200 °C/vacuum for 1000 h (d). Fig. 3(e-h) is the enlarged micrographs for Fig. 3(a-d), respectively.
Fig. 4. EDS and XRD profiles of Cu sinter joints during the storage test. The EDS profiles were obtained from Cu joints after 1000 h in 200 °C/vacuum (a), after 100 h in 200 °C/ambient (b) and after 1000 h in 200 °C/ambient (c). The relationship between O content and storage time. (d) Copper oxides can be identified in XRD profiles (e).
Fig. 5. The schematic diagram of electrical measurement on Cu sinter joining (a), and the corresponding photographs (b), equivalent circuit diagram (c) and the electrical resistance evolution of the Cu sinter joints during the thermal storage (d).
[1] | B.B. Jayant, Silicon Carbide Power Devices, World Scientific, 2006. |
[2] |
U.K. Mishra, L. Shen, T.E. Kazior, Y.-.F. Wu, Proc, IEEE 96 (2008) 287-305.
DOI URL |
[3] | B.K. Bose, Power Electronics and Motor Drives: Advances and Trends, Elsevier, 2010. |
[4] |
H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41 (2010) 824-832.
DOI URL |
[5] | J. Lutz, H. Schlangenotto, U. Scheuermann, R. De Doncker, Semiconductor Power Devices -Physics, Characteristics, Reliability, Springer Verlag, 2011. |
[6] | J. LMillán, in: CAS 2012 (International Semiconductor Conference), IEEE, 2012, pp. 57-66. |
[7] | L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, in: 2007 IEEE Power Electronics Specialists Conference, IEEE, 2007, pp. 2234-2240. |
[8] | C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, H. Morel, High Temperature Electronics Network (HiTEN) (2011) 1-7. |
[9] |
S.A. Paknejad, S.H. Mannan, Microelectron. Reliab. 70 (2017) 1-11.
DOI URL |
[10] |
H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Open Surf. Sci. J. 3 (2011) 60-64.
DOI URL |
[11] |
T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, N. Terada, J. Electron. Mater. 42 (2013) 1260-1267.
DOI URL |
[12] |
Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, C.S. Tan, Appl. Phys. Lett. 108 (2016) 263103.
DOI URL |
[13] |
J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, G. Liao, Z. Tang, Nanoscale Res. Lett. 12 (2017) 255.
DOI URL |
[14] |
J. Liu, H. Chen, H. Ji, M. Li, ACS Appl. Mater. Interfaces 8 (2016) 33289-33298.
DOI URL |
[15] | J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, A. Waag, IEEE Trans. 2 (2012) 1587-1591. |
[16] |
J. Li, X. Li, L. Wang, Y.-.H. Mei, G.-.Q. Lu, Mater. Des. 140 (2018) 64-72.
DOI URL |
[17] |
J.-.W. Yoon, J.-.H. Back, Materials (Basel) 11 (2018) 2105.
DOI URL |
[18] | K. Suganuma, S.-.J. Kim, K.-.S. Kim, JO. J. Miner, Metals Mater. Soc. 61 (2009) 64-71. |
[19] | K. Suganuma, J. Jiu, in:Advanced Bonding Technology Based on Nano-and Micro-Metal Pastes, Materials for Advanced Packaging, Springer, 2017, pp. 589-626. |
[20] |
X. Liu, H. Nishikawa, Scr. Mater. 120 (2016) 80-84.
DOI URL |
[21] |
T. Satoh, T. Ishizaki, J. Alloy. Compd. 629 (2015) 118-123.
DOI URL |
[22] |
S. Sun, Q. Guo, H. Chen, M. Li, C. Wang, Microelectron. Reliab. 80 (2018) 198-204.
DOI URL |
[23] | H. Nakako, C. Sugama, Y. Kawana, M. Negishi, Y. Yanaka, D. Ishikawa, Y. Ejiri, in: PCIM Europe 2018; International Exhibition and Conference for Power Elec-tronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, 2018, pp. 1-6. |
[24] |
Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.-.F. Li, S. Nagao, K. Suganuma, Mater. Des. 160 (2018) 1265-1272.
DOI URL |
[25] | Y. Gao, S. Takata, C. Chen, S. Nagao, K. Suganuma, A.S. Bahman, F. Iannuzzo, Microelectron. Reliab. 100 (2019) 113456. |
[26] | K. Suganuma, S.-.J. Kim, K.-.S. Kim, JOM 61 (2009) 64-71. |
[27] |
R. Satoh, K. Arakawa, M. Harada, K. Matsui, IEEE Trans. Comp. Hybrids Manuf. Technol. 14 (1991) 224-232.
DOI URL |
[28] |
H. Zhang, S. Nagao, K. Suganuma, H.-.J. Albrecht, K. Wilke, J. Mater. Sci.-Mater. Electron. 27 (2016) 1337-1344.
DOI URL |
[1] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[2] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[3] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[4] | Zaixin Wei, Zhongyang Wang, Ciqun Xu, Guohua Fan, Xiaoting Song, Yao Liu, Runhua Fan. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure [J]. J. Mater. Sci. Technol., 2022, 112(0): 77-84. |
[5] | Fengnian Zhang, Fuhao Cheng, Chufei Cheng, Meng Guo, Yufeng Liu, Yang Miao, Feng Gao, Xiaomin Wang. Preparation and electrical conductivity of (Zr, Hf, Pr, Y, La) O high entropy fluorite oxides [J]. J. Mater. Sci. Technol., 2022, 105(0): 122-130. |
[6] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[7] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[8] | Yuanyuan Qiao, Xiaoying Liu, Ning Zhao, Lawrence C M Wu, Chunying Liu, Haitao Ma. Morphology and orientation evolution of Cu6Sn5 grains on (001)Cu and (011)Cu single crystal substrates under temperature gradient [J]. J. Mater. Sci. Technol., 2021, 95(0): 29-39. |
[9] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[10] | C. Guillén, J. Herrero. Amorphous WO3-x thin films with color characteristics tuned by the oxygen vacancies created during reactive DC sputtering [J]. J. Mater. Sci. Technol., 2021, 78(0): 223-228. |
[11] | Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model [J]. J. Mater. Sci. Technol., 2020, 39(0): 89-98. |
[12] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[13] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[14] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[15] | Mei Rao, Guoqiang Luo, Jian Zhang, Yiyu Wang, Qiang Shen, Lianmeng Zhang. Effect of Ni content in Cu1-xNix coating on microstructure evolution and mechanical properties of W/Mo joint via low-temperature diffusion bonding [J]. J. Mater. Sci. Technol., 2020, 54(0): 171-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||