J. Mater. Sci. Technol. ›› 2022, Vol. 96: 11-20.DOI: 10.1016/j.jmst.2021.05.001
• Research Article • Previous Articles Next Articles
Jijun Zhanga,b,1, Zexuan Wanga,1, Jiawei Lia,c,*(), Yaqiang Donga,c, Aina Hea,c, Guoguo Tana, Qikui Mana, Bin Shend, Junqiang Wanga, Weixing Xiaa, Jun Shene, Xin-min Wanga,*(
)
Received:
2021-03-24
Revised:
2021-04-29
Accepted:
2021-05-04
Published:
2022-01-10
Online:
2022-01-05
Contact:
Jiawei Li,Xin-min Wang
About author:
jbmgwang@yahoo.co.jp (X.-m. Wang).Jijun Zhang, Zexuan Wang, Jiawei Li, Yaqiang Dong, Aina He, Guoguo Tan, Qikui Man, Bin Shen, Junqiang Wang, Weixing Xia, Jun Shen, Xin-min Wang. Magnetic-electric composite coating with oriented segregated structure for enhanced electromagnetic shielding[J]. J. Mater. Sci. Technol., 2022, 96: 11-20.
Fig. 1. Synthesis route of Ni-Cu-P modified Fe-Si-B - P-Nb amorphous powders and coatings. Schematic and corresponding SEM images of (a, b) Fe-Si-B - P-Nb amorphous powder and (c, d) Ni-Cu-P modified powder. (e) Schematic of HVAF spraying process for preparing Fe-based amorphous coatings.
Fig. 2. Low-magnification microstructure characterizations for 1# and 2#. Cross-sectional BSE SEM images of (a) 1# and (b) 2#. (c) Statistical data of layer thickness for inserted Ni-Cu-P and Fe-Si-B - P-Nb matrix extracted from (b).
Al substrate | 1# | 2# | |
---|---|---|---|
EMI SE (dB) (8-12 GHz) | 18-21 | 27-32 (1#@Al) | 40-41 (2#@Al) |
Oxygen content (ppm) | / | 4300±330 | 3000±170 |
Ms (emu/g) | / | 142±1 | 135±1 |
Hc (Oe) | / | 19.3 | 14.7 |
Electrical conductivity (S/m) | 1750 | 1670 (1#@Al) | 2510 (2#@Al) |
Thermal conductivity (W/(m K)) | 173 | 28 (1#@Al) | 57 (2#@Al) |
Wear rate (m3/(N m)) | 1.3 × 10-13 | 8.5 × 10-14 | 5.8 × 10-14 |
Vickers hardness | 101 | 624 | 670 |
Table 1 Summarized parameters for coatings and coating@Al composites. Electromagnetic shielding effectiveness EMI SE, oxygen content, saturation magnetization Ms, coercivity Hc, electrical conductivity, thermal conductivity, wear rate, and Vickers hardness. Data of Al substrate are shown for comparison.
Al substrate | 1# | 2# | |
---|---|---|---|
EMI SE (dB) (8-12 GHz) | 18-21 | 27-32 (1#@Al) | 40-41 (2#@Al) |
Oxygen content (ppm) | / | 4300±330 | 3000±170 |
Ms (emu/g) | / | 142±1 | 135±1 |
Hc (Oe) | / | 19.3 | 14.7 |
Electrical conductivity (S/m) | 1750 | 1670 (1#@Al) | 2510 (2#@Al) |
Thermal conductivity (W/(m K)) | 173 | 28 (1#@Al) | 57 (2#@Al) |
Wear rate (m3/(N m)) | 1.3 × 10-13 | 8.5 × 10-14 | 5.8 × 10-14 |
Vickers hardness | 101 | 624 | 670 |
Fig. 3. High-magnification TEM microstructural analysis for 1# and 2#. (a, b) Bright-field images. (c, d) STEM-EDX maps of the selected dashed boxes in (a, b). (e, f) HRTEM image of one nanophase in the polycrystalline oxide layer, SAED patterns and extracted radial intensity profiles for regions A and B.
Fig. 4. EMI shielding performances of coating@Al composites without (1#) and with (2#) Ni-Cu-P modification. Data of Al substrate is shown for reference.
Fig. 5. Magnetic and electric characterizations. (a) Hysteresis loops and magnified loops at the near zero-field region of 1# and 2#. (b) Electrical conductivity of Al substrate, 1#@Al, and 2#@Al. (c) C-AFM image of 2#.
Fig. 6. Visualized effect of conductive layers on the magnetic and electrical information of 1# and 2#. TEM images, reconstructed phase images of magnetic and electrical information in the selected yellow boxed regions, and associated phase profiles along the dashed lines for (a) 1# and (b) 2#.
Fig. 7. CST simulations for EMI shielding mechanism. (a, d) CST models, Model A for 1# and Model B for 2#. (b, e) Power flow distributions, describing the EMWs transmission process. (c, f) Power loss density maps, illustrating the EMWs absorbing ability. The intensities are normalized values.
[1] |
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, Adv. Mater. 30 (2018) 1706343.
DOI URL |
[2] |
Y. Yuan, X. Sun, M. Yang, F. Xu, Z. Lin, X. Zhao, Y. Ding, J. Li, W. Yin, Q. Peng, X. He, Y. Li, ACS Appl. Mater. Interfaces 9 (2017) 21371-21381.
DOI URL |
[3] |
Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao, Y. Ding, M. Ma, F. Gao, X. Zhao, Y. Zhang, Adv. Funct. Mater. 28 (2018) 1703801.
DOI URL |
[4] |
J.-.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mater. Sci. Eng., R 74 (2013) 211-232.
DOI URL |
[5] | F. Qin, H.-.X. Peng, Prog.Mater. Sci. 58 (2013) 183-259. |
[6] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137.
DOI URL PMID |
[7] |
F. Sharif, M. Arjmand, A.A. Moud, U. Sundararaj, E.P.L. Roberts, ACS Appl. Mater. Interfaces 9 (2017) 14171-14179.
DOI URL |
[8] |
W.-.L. Song, C. Gong, H. Li, X.-.D. Cheng, M. Chen, X. Yuan, H. Chen, Y. Yang, D. Fang, ACS Appl. Mater. Interfaces 9 (2017) 36119-36129.
DOI URL |
[9] |
J. Liu, H.-.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.-.Z. Yu, Adv. Mater. 29 (2017) 1702367.
DOI URL |
[10] | R. Pandey, S. Tekumalla, M. Gupta, Materials For Potential EMI Shielding Ap- plications, K. Joseph, R. Wilson, G. George (Eds.), Elsevier, 2020 edn. |
[11] |
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas, Nat. Commun. 6 (2015) 6628.
DOI URL |
[12] |
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489.
DOI URL |
[13] | J.-.C. Shu, W.-.Q. Cao, M.-.S. Cao, Adv. Funct. Mater. (2021) 2100470. |
[14] |
B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, ACS Appl. Mater. Interfaces 5 (2013) 11383-11391.
DOI URL |
[15] |
Y. Liu, Z. Chen, Y. Zhang, R. Feng, X. Chen, C. Xiong, L. Dong, ACS Appl. Mater. Interfaces 10 (2018) 13860-13868.
DOI URL |
[16] |
X. Ma, Q. Zhang, Z. Luo, X. Lin, G. Wu, Mater. Des. 89 (2016) 71-77.
DOI URL |
[17] | S. Celozzi, R. Araneo, G. Lovat, Electromagnetic Shielding, 1st edition, Wi- ley-IEEE Press, Hoboken, New Jersey, 2008 edn. |
[18] |
J. Zhang, J. Li, G. Tan, R. Hu, J. Wang, C. Chang, X. Wang, ACS Appl. Mater. Interfaces 9 (2017) 42192-42199.
DOI URL |
[19] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[20] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[21] |
L. Liu, C. Zhang, Thin Solid Films 561 (2014) 70-86.
DOI URL |
[22] |
W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo, Y. Qin, J. Therm. Spray Technol. 23 (2014) 1157-1180.
DOI URL |
[23] | H.-.S. Lee, H.-.B. Choe, I.-.Y. Baek, J.K. Singh, M.A. Ismail, Materials (Basel) (2017) 10. |
[24] |
S. Dong, B. Song, X. Zhang, C. Deng, N. Fenineche, B. Hansz, H. Liao, C. Coddet, J. Alloys Compd. 584 (2014) 254-260.
DOI URL |
[25] |
S. Narayana, Y. Sato, Adv. Mater. 24 (2012) 71-74.
DOI URL |
[26] |
C. Zhang, W. Wang, Y.-.C. Li, Y.-.G. Yang, Y. Wu, L. Liu, J. Mater. Chem. A 6 (2018) 6 800-6 805.
DOI URL |
[27] |
C. Zhang, H. Zhou, L. Liu, Acta Mater. 72 (2014) 239-251.
DOI URL |
[28] |
C. Zhang, W. Wang, W. Xing, L. Liu, Scripta Mater. 177 (2020) 112-117.
DOI URL |
[29] |
M. Cherigui, H.I. Feraoun, N.E. Feninehe, H. Aourag, C. Coddet, Mater. Chem. Phys. 85 (2004) 113-119.
DOI URL |
[30] |
S.D. Zhang, W.L. Zhang, S.G. Wang, X.J. Gu, J.Q. Wang, Corros. Sci. 93 (2015) 211-221.
DOI URL |
[31] |
A. Milanti, V. Matikainen, H. Koivuluoto, G. Bolelli, L. Lusvarghi, P. Vuoristo, Surf. Coat. Technol. 277 (2015) 81-90.
DOI URL |
[32] |
W. Wang, C. Zhang, P. Xu, M. Yasir, L. Liu, Mater. Des. 73 (2015) 35-41.
DOI URL |
[33] | J. Farmer, J.-.S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, T. Lian, R. Rebak, J. Perepezko, J. Payer, D. Branagan, B. Beardsley, A. D’amato, L. Aprigliano, Met- all. Mater. Trans. A 40 (2009) 1289-1305. |
[34] |
J. Gou, H. Zhang, X. Yang, Y. Chen, Y. Yu, X. Li, H. Zhang, Adv. Funct. Mater. 28 (2018) 1707272.
DOI URL |
[35] |
X.-L. Huang, D. Xu, S. Yuan, D.-lL. Ma, S. Wang, H.-yY. Zheng, X.-bB. Zhang, Adv. Mater. 26 (2014) 7264-7270.
DOI URL |
[36] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
[37] |
R. Kumar, H. Jain, S. Sriram, A. Chaudhary, A. Khare, V.A.N. Ch, D.P. Mondal, Mater. Chem. Phys. 240 (2020) 122274.
DOI URL |
[38] | F.C. Campbell, Oxford, 2006 edn2006. |
[39] |
M. Sokoluk, C. Cao, S. Pan, X. Li, Nat. Commun. 10 (2019) 98.
DOI URL |
[40] |
G. Wu, C. Liu, L. Sun, Q. Wang, B. Sun, B. Han, J.-.J. Kai, J. Luan, C.T. Liu, K. Cao, Y. Lu, L. Cheng, J. Lu, Nat. Commun. 10 (2019) 5099.
DOI URL |
[41] | H. Yao, Z. Zhou, L. Wang, Z. Tan, D. He, L. Zhao, Coatings 7 (2017). |
[42] | P.-D.I.I. Barin, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995. |
[43] |
X.L. Lu, Y. Li, L. Lu, Acta Mater. 106 (2016) 182-192.
DOI URL |
[44] |
M.J.N.V. Prasad, A.H. Chokshi, Acta Mater. 59 (2011) 4055-4067.
DOI URL |
[45] |
Y. Li, H.-.B. Zhang, L. Zhang, B. Shen, W. Zhai, Z.-.Z. Yu, W. Zheng, ACS Appl. Mater. Interfaces 9 (2017) 13323-13330.
DOI URL |
[46] |
M. Zhang, C. Han, W.-.Q. Cao, M.-.S. Cao, H.-.J. Yang, J. Yuan, Nano-Micro Letters 13 (2020) 27.
DOI PMID |
[47] | M. Telford, Mater. Today 7 (2004) 36-43. |
[48] |
B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020) 2003502.
DOI URL |
[49] |
B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai, B. Fan, R. Zhang, J. Mater. Chem. C 8 (2020) 500-509.
DOI URL |
[50] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 4 86-4 90.
DOI URL |
[51] |
S. Zhu, J. Fu, H. Li, L. Zhu, Y. Hu, W. Xia, X. Zhang, Y. Peng, J. Zhang, ACS Nano 12 (2018) 3442-3448.
DOI URL |
[52] |
R.C. Che, M. Takeguchi, M. Shimojo, W. Zhang, K. Furuya, Appl. Phys. Lett. 87 (2005) 223109.
DOI URL |
[53] |
W. You, R. Che, ACS Appl. Mater. Interfaces 10 (2018) 15104-15111.
DOI URL |
[54] |
B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 28917-28925.
DOI URL |
[55] |
M.R. McCartney, D.J. Smith, Annu. Rev. Mater. Res. 37 (2007) 729-767.
DOI URL |
[56] |
B. Zhao, B. Fan, G. Shao, W. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 18815-18823.
DOI URL |
[57] |
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Carbon N Y 102 (2016) 154-160.
DOI URL |
[58] |
W.-.C. Yu, G.-.Q. Zhang, Y.-.H. Liu, L. Xu, D.-.X. Yan, H.-.D. Huang, J.-.H. Tang, J.-.Z. Xu, Z.-.M. Li, Chem. Eng. J. 373 (2019) 556-564.
DOI URL |
[59] |
J.-.C. Shu, X.-.Y. Huang, M.-.S. Cao, Carbon N Y 174 (2021) 638-646.
DOI URL |
[1] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[2] | Lizi Liu, Xianhua Chen, Jingfeng Wang, Liying Qiao, Shangyu Gao, Kai Song, Chaoyue Zhao, Xiaofang Liu, Di Zhao, Fusheng Pan. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35(6): 1074-1080. |
[3] | Xiaoling Liu, Xiaowei Yin, Wenyan Duan, Fang Ye, Xinliang Li. Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics [J]. J. Mater. Sci. Technol., 2019, 35(12): 2832-2839. |
[4] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||