J. Mater. Sci. Technol. ›› 2022, Vol. 114: 165-171.DOI: 10.1016/j.jmst.2021.12.001
• Research Article • Previous Articles Next Articles
Kun Wanga,b,*(), Zeyuan Sua, Yali Chenc, Heng Qic, Ting Wangc, Hao Wangc, Youqian Zhangc, Li Caoa, Qian Yec, Fobao Huanga, Yu Tongc,*(
), Hongqiang Wangc,*(
)
Received:
2021-11-17
Revised:
2021-12-04
Accepted:
2021-12-09
Published:
2022-07-01
Online:
2022-01-10
Contact:
Kun Wang,Yu Tong,Hongqiang Wang
About author:
hongqiang.wang@nwpu.edu.cn (H. Wang).Kun Wang, Zeyuan Su, Yali Chen, Heng Qi, Ting Wang, Hao Wang, Youqian Zhang, Li Cao, Qian Ye, Fobao Huang, Yu Tong, Hongqiang Wang. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells[J]. J. Mater. Sci. Technol., 2022, 114: 165-171.
Fig. 1. Schematic illustration of the bulk and interface modification process via an ionic liquid of BMIMPF6 as both processing additive and post-treatment agent in ambient air.
Fig. 4. (a, b) UV-vis absorption spectra and Tauc plots of the control and optimized CsPbI3 films. (c) Time-resolved photoluminescence (TRPL) spectra of the control and optimized CsPbI3 films. (d) Dark I-V curves of the electron-only devices based on the control and optimized CsPbI3 films. According to the slope of the curve, three regions can be identified: Ohmic region, trap-filled limited region (TFL) and SCLC region (Child).
Fig. 5. (a) Configuration of the perovskite solar cells. (b) Illustration of interface modification via depositing an ionic liquid layer between CsPbI3 and PCBM, and schematic representation of energy level alignment induced by the interfacial dipole. (c) J-V plots of the champion devices based on control and optimized perovskites measured under simulated AM 1.5 G solar illumination of 100 mW cm-2. (d) Efficiency histogram of the control and the optimized CsPbI3 PSCs from 20 independent devices. (e) Open-circuit voltage and (f) short circuit current density versus light intensity of the control and optimized photovoltaic devices.
Samples | Voc (V) | Jsc (mA cm-2) | FF (%) | PCE (%) |
---|---|---|---|---|
w/o | 0.92 | 13.81 | 67.87 | 8.64 (7.29±0.78) |
w-bulk | 0.91 | 17.17 | 70.13 | 10.92 (9.38±0.87) |
w-inter | 0.94 | 15.57 | 71.43 | 10.43 (9.27±0.75) |
w-dual | 0.95 | 19.39 | 71.57 | 13.21 (12.36±0.46) |
Table 1. Photovoltaic parameters (Voc, Jsc, FF and PCE) of control and optimized devices with champion efficiency.
Samples | Voc (V) | Jsc (mA cm-2) | FF (%) | PCE (%) |
---|---|---|---|---|
w/o | 0.92 | 13.81 | 67.87 | 8.64 (7.29±0.78) |
w-bulk | 0.91 | 17.17 | 70.13 | 10.92 (9.38±0.87) |
w-inter | 0.94 | 15.57 | 71.43 | 10.43 (9.27±0.75) |
w-dual | 0.95 | 19.39 | 71.57 | 13.21 (12.36±0.46) |
Fig. 6. (a) Long-term stability of the control and optimized CsPbI3 PSC devices. (b) Steady-state outputs of the optimized PSC at the maximum power point measured with continuous illumination.
[1] |
M. Lee Michael, J. Teuscher, T. Miyasaka, N. Murakami Takurou, J. Snaith Henry, Science 338 (2012) 643-647.
DOI URL PMID |
[2] |
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, M. Zakeeruddin Shaik, M. Grätzel, Science 358 (2017) 768-771.
DOI PMID |
[3] |
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-.K. Kim, C.S. Moon, N.J. Jeon, J.-.P. Correa-Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590 (2021) 587-593.
DOI URL |
[4] |
W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, C. Ran, L. Song, G. Xing, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Science 371 (2021) 1359-1364.
DOI URL PMID |
[5] | N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee, J.-.K. Lee, P.V. Pikhitsa, J. Byun, M. Choi, Nat. Commun. 7 (2016) 13422. |
[6] |
E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y. Qi, Energy Environ. Sci. 9 (2016) 3406-3410.
DOI URL |
[7] |
D.P. Nenon, J.A. Christians, L.M. Wheeler, J.L. Blackburn, E.M. Sanehira, B. Dou, M.L. Olsen, K. Zhu, J.J. Berry, J.M. Luther, Energy Environ. Sci. 9 (2016) 2072-2082.
DOI URL |
[8] | Z. Yao, W. Zhao, S. Liu, J. Mater. Chem. A 9 (2021) 11124-11144. |
[9] |
A. Ho-Baillie, M. Zhang, C.F.J. Lau, F.-.J. Ma, S. Huang, Joule 3 (2019) 938-955.
DOI URL |
[10] | Z. Qiu, N. Li, Z. Huang, Q. Chen, H. Zhou, Small Methods 4 (2020) 1900877. |
[11] |
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nat. Commun. 9 (2018) 1076.
DOI URL |
[12] | T. Liu, J. Zhang, X. Wu, H. Liu, F. Li, X. Deng, F. Lin, X. Li, Z. Zhu, A.K.Y. Jen, Solar RRL 4 (2020) 2000205. |
[13] | C. Yan, Z. Li, Y. Sun, J. Zhao, X. Huang, J. Yang, Z. Ci, L. Ding, Z. Jin, J. Mater. Chem. A 8 (2020) 10346-10353. |
[14] | X. Chang, J. Fang, Y. Fan, T. Luo, H. Su, Y. Zhang, J. Lu, L. Tsetseris, T.D. An-thopoulos, S. Liu, K. Zhao, Adv. Mater. 32 (2020) 2001243. |
[15] |
S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, R. Zhang, H. Chen, ACS Energy Lett 3 (2018) 1824-1831.
DOI URL |
[16] |
S.M. Yoon, H. Min, J.B. Kim, G. Kim, K.S. Lee, S.I. Seok, Joule 5 (2021) 183-196.
DOI URL |
[17] |
M. Ustinova, M. Mikheeva, G. Shilov, N. Dremova, L. Frolova, K. Stevenson, S. Aldoshin, P. Troshin, ACS Appl. Mater. Interfaces 13 (2021) 5184-5194.
DOI URL |
[18] | Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Adv. Energy Mater. 5 (2015) 1501066. |
[19] |
E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-.Y. Yang, J.H. Noh, J. Seo, Nature 567 (2019) 511-515.
DOI URL |
[20] |
S. Fu, L. Wan, W. Zhang, X. Li, W. Song, J. Fang, ACS Energy Lett 5 (2020) 3314-3321.
DOI URL |
[21] | T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, L. Han, Adv. Mater. 31 (2019) 1900605. |
[22] |
D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 5 (2020) 44-60.
DOI URL |
[23] | J. Xiong, Z. Dai, S. Zhan, X. Zhang, X. Xue, W. Liu, Z. Zhang, Y. Huang, Q. Dai, J. Zhang, Nano Energy 84 (2021) 105882. |
[24] | S. Fu, W. Zhang, X. Li, J. Guan, W. Song, J. Fang, ACS Energy Lett (2021) 3661-3668. |
[25] | X. Deng, L. Xie, S. Wang, C. Li, A. Wang, Y. Yuan, Z. Cao, T. Li, L. Ding, F. Hao, Chem. Eng. J. 398 (2020) 125594. |
[26] |
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J.T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, H.J. Snaith, Nature 571 (2019) 245-250.
DOI URL |
[27] |
W. Hui, L. Chao, H. Lu, F. Xia, Q. Wei, Z. Su, T. Niu, L. Tao, B. Du, D. Li, Y. Wang, H. Dong, S. Zuo, B. Li, W. Shi, X. Ran, P. Li, H. Zhang, Z. Wu, W. Huang, Science 371 (2021) 1359-1364.
DOI URL PMID |
[28] | C. Huang, P. Lin, N. Fu, K. Sun, M. Ye, C. Liu, X. Zhou, L. Shu, X. Hao, B. Xu, X. Zeng, Y. Wang, S. Ke, J. Mater. Chem. A 6 (2018) 22086-22095. |
[29] |
D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, R.P.H. Chang, Energy Environ. Sci. 9 (2016) 3071-3078.
DOI URL |
[30] | J.-.Y. Seo, T. Matsui, J. Luo, J.-.P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, A. Hagfeldt, S.M. Zakeeruddin, U. Steiner, M. Grätzel, A. Abate, Adv. Energy Mater. 6 (2016) 1600767. |
[31] | A. Wang, X. Deng, J. Wang, S. Wang, X. Niu, F. Hao, L. Ding, Nano Energy 81 (2021) 105631. |
[32] | Z. Lin, Y. Su, R. Dai, G. Liu, J. Yang, W. Sheng, Y. Zhong, L. Tan, Y. Chen, ACS Appl. Mater. Interfaces 13 (2021) 15420-15428. |
[33] |
W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu, Y. Ding, H. Chen, Q. Tang, ACS Appl. Mater. Interfaces 12 (2020) 4540-4548.
DOI URL |
[34] |
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 365 (2019) 591.
DOI URL |
[35] |
Y. Fu, M.T. Rea, J. Chen, D.J. Morrow, M.P. Hautzinger, Y. Zhao, D. Pan, L.H. Manger, J.C. Wright, R.H. Goldsmith, S. Jin, Chem. Mater. 29 (2017) 8385-8394.
DOI URL |
[36] |
S. Fu, W. Zhang, X. Li, L. Wan, Y. Wu, L. Chen, X. Liu, J. Fang, ACS Energy Lett 5 (2020) 676-684.
DOI URL |
[37] | Y. Zhao, P. Zhu, M. Wang, S. Huang, Z. Zhao, S. Tan, T.-.H. Han, J.-.W. Lee, T. Huang, R. Wang, J. Xue, D. Meng, Y. Huang, J. Marian, J. Zhu, Y. Yang, Adv. Mater. 32 (2020) 1907769. |
[38] |
Y. Chen, L. Su, M. Jiang, X. Fang, J. Mater. Sci. Technol. 105 (2022) 259-265.
DOI URL |
[39] |
K. Wang, Z. Jin, L. Liang, H. Bian, H. Wang, J. Feng, Q. Wang, S. Liu, Nano Energy 58 (2019) 175-182.
DOI URL |
[40] | F. Cai, Y. Yan, J. Yao, P. Wang, H. Wang, R.S. Gurney, D. Liu, T. Wang, Adv. Functi. Mater. 28 (2018) 1801985. |
[41] | T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 30 (2018) 1706576. |
[42] | R. Azmi, W.T. Hadmojo, S. Sinaga, C.-.L. Lee, S.C. Yoon, I.H. Jung, S.-.Y. Jang, Adv. Energy Mater. 8 (2018) 1701683. |
[43] |
W. Chu, J. Yang, Q. Jiang, X. Li, J. Xin, Appl. Surf. Sci. 440 (2018) 1116-1122.
DOI URL |
[44] | Y. Guo, J. Tao, F. Shi, X. Hu, Z. Hu, K. Zhang, W. Cheng, S. Zuo, J. Jiang, J. Chu, ACS Appl. Energy Mater. 1 (2018) 20 0 0-20 06. |
[45] | Q. Wu, W. Zhou, Q. Liu, P. Zhou, T. Chen, Y. Lu, Q. Qiao, S. Yang, ACS Appl. Materi. Interfaces 8 (2016) 34464-34473. |
[46] | C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng, J. Yang, X. Duan, L. Tan, Z. Li, Y. Chen, Adv. Funct. Mater. 29 (2019) 1808059. |
[47] | S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B 82 (2010) 245207. |
[48] | T. Du, J. Kim, J. Ngiam, S. Xu, P.R.F. Barnes, J.R. Durrant, M.A. McLachlan, Adv. Funct. Mater. 28 (2018) 1801808. |
[49] | D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, J. Mater. Chem. A 7 (2019) 22420-22428. |
[50] | X. Wang, X. Ran, X. Liu, H. Gu, S. Zuo, W. Hui, H. Lu, B. Sun, X. Gao, J. Zhang, Y. Xia, Y. Chen, W. Huang, Angew. Chem. Int. Ed. 59 (2020) 13354-13361. |
[51] | H. Chen, W. Fu, C. Huang, Z. Zhang, S. Li, F. Ding, M. Shi, C.-.Z. Li, A.K.Y. Jen, H. Chen, Adv. Energy Mater. 7 (2017) 170 0 012. |
[1] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
[2] | Huan Liu, Haijun Yu. Ionic liquids for electrochemical energy storage devices applications [J]. J. Mater. Sci. Technol., 2019, 35(4): 674-686. |
[3] | Jiang Wei, Wei Chen, Demin Chen, Ke Yang. An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries [J]. J. Mater. Sci. Technol., 2018, 34(6): 983-989. |
[4] | R. Rajiv Gandhi, S. Gowri, J. Suresh, M. Sundrarajan. Ionic Liquids Assisted Synthesis of ZnO Nanostructures: Controlled Size, Morphology and Antibacterial Properties [J]. J. Mater. Sci. Technol., 2013, 29(6): 533-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||