J. Mater. Sci. Technol. ›› 2022, Vol. 114: 143-164.DOI: 10.1016/j.jmst.2021.10.029
• Research Article • Previous Articles Next Articles
Wanying Leia,*(), Tong Zhoua, Xin Panga, Shixiang Xuea, Quanlong Xub,*(
)
Received:
2021-08-12
Revised:
2021-10-22
Accepted:
2021-10-25
Published:
2022-07-01
Online:
2022-01-13
Contact:
Wanying Lei,Quanlong Xu
About author:
xuql@wzu.edu.cn (Q. Xu).Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects[J]. J. Mater. Sci. Technol., 2022, 114: 143-164.
Fig. 1. (a) Schematic illustration of typical process in photocatalytic solar fuel production. (b) Band edge positions of some representative semiconductor photocatalysts relative to the energy potentials of various redox couples at pH 7 versus a vacuum (left) and NHE (right).
Fig. 3. (a) TEM image of Ti3C2Tx prepared by HF etching process. Reproduced with permission [14]. Copyright 2011, WILEY-VCH. (b) Schematic showing the synthesis procedure of Ti3C2Tx clay with variable shape by etching in LiF + HCl solution. (c) TEM image of several Ti3C2Tx flakes. Inset: Selected area electron diffraction (SAED) pattern. Reprinted with permission from Ref. [32]. Copyright 2014, Macmillan Publishers Limited. (d) TEM image of Mo2CTx- Li after 6 days’ etching. Reproduced with permission [39]. Copyright 2016, WILEY-VCH. (e) XRD patterns of Ti3AlC2, Ti3C2Tx after HF etching, Ti3C2Tx-IC after etching in NH4HF2. Reproduced with permission [49]. Copyright 2014, American Chemical Society. (f) TEM image of Ti3C2Tx obtained by LiF + HCl with the ratio of 7.5:1. Reproduced with permission [58]. Copyright 2016, WILEY-VCH. (g) Schematic illustrating the intercalation and delamination process of Ti3C2Tx with the assist of TMAOH. Reproduced with permission [57]. Copyright 2016, WILEY-VCH. (h) Optical image of α-Mo2C growth onto a Cu/Mo substrate with different morphologies. (i) BF-STEM image of the produced α-Mo2C crystal. Green circles: Mo atoms, red circle: C atom. Reproduced with permission [62]. Copyright 2015, Macmillan Publishers Limited.
Fig. 4. (a) Schematic showing the hydrothermal synthesis of Ti3C2Tx QDs. (b) TEM image of Ti3C2Tx QDs. Inset: Statistical analysis of the lateral size of QDs. Reproduced with permission [69]. Copyright 2018, Royal Society of Chemistry. (c) The fabrication procedure of Ti3C2Tx QDs by combined probe sonication and bath sonication in TBAOH. (d) TEM image of Ti3C2Tx QDs. Inset: Statistic analysis of particle size of Ti3C2Tx QDs. (e) Statistic analysis of thickness of Ti3C2Tx QDs. Reproduced with permission [65]. Copyright 2017, Royal Society of Chemistry. (f) Schematic illustrating the microexplosion process to construct 0D Ti3C2Tx QDs. (g) TEM image of Ti3C2Tx QDs. Inset: Statistic analysis of particle size of Ti3C2Tx QDs. (h) AFM image of Ti3C2Tx QDs. Reproduced with permission [68]. Copyright 2020, WILEY-VCH.
Fig. 5. (a) Schematic illustrating the preparation of Mo2C/C composites by molten salt method. TEM (b) and HRTEM (c) images of the obtained Mo2C/C nanohybrids. Inset: the corresponding fast-Fourier-transform (FFT) pattern. Reproduced with permission [71]. Copyright 2018, WILEY-VCH. SEM (d) and TEM (e) images of Mo2C/C polyhedrons synthesized by pyrolysis. Reproduced with permission [77]. Copyright 2018, American Chemical Society.
Catalyst | Light source | Reaction condition | H2 evolution Activity (µmol h-1 g-1) | AQE (%) | Refs. |
---|---|---|---|---|---|
TiO2/Ti3C2 | 300 W Xe lamp | CH3OH(10%)+chloroplatinic acid (3%, 400 μL) | 6979 | NA | [ |
Ti3C2/TiO2 | 350 W Xe lamp | Glycerinum (10 vol%, 80 mL) | 120 | 0.9 (365 nm) | [ |
Ti3C2@TiO2@MoS2 | 300 W Xe lamp (AM 1.5) | TEOA | 6425 | 4.61 (420 nm) | [ |
Ti3C2/P25 | 200 W Hg lamp (285 nm ≤ λ ≤ 325 nm) | CH3OH (25 vol%, 40 mL) | 2650 | 15.8 (305 nm) | [ |
Cu/TiO2@Ti3C2(OH)x | 300 W Xe lamp (simulated sunlight) | CH3OH (25 vol%, 7 vol%, 140 mL) | 860 | NA | [ |
TiO2/Ti3C2/UiO-66-NH2 | 300 W Xe lamp (350 nm < λ < 780 nm) | Na2S/Na2SO3 (0.1 M/0.1 M, 50 mL) | 1980 | NA | [ |
PtO@Ti3C2/TiO2 | 300 W Xe lamp | CH3OH (50 vol%, 100 mL) | 2540 | 4.2 (365 nm) | [ |
MoS2/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | CH3OH (30 vol%, 50 mL) | 6144 | NA | [ |
MoxS@TiO2@Ti3C2 | 300 W Xe lamp (AM 1.5) | TEOA | 10,506 | 7.54 | [ |
Ti3C2/CdS | 300 W Xe lamp (λ ≥ 420 nm) | Latic acid (18 vol%, 80 mL) | 14,342 | 40.1 (420 nm) | [ |
CdS/Ti3C2 | 300 WXe lamp (λ ≥ 420 nm) | Latic acid (10 wt%, 50 mL) | 2407 | 35.6 (420 nm) | [ |
CdS/Ti3C2Tx | 300 WXe lamp (λ ≥ 420 nm) | Latic acid (10 wt%, 50 mL) | 3226 | 47 (420 nm) | [ |
CdS@Ti3C2@CoO | 300 W Xe lamp (λ > 420 nm) | H2O (100 mL) | 134.46 | 0.06 (500 nm) | [ |
Ti3C2@Au@CdS | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 80 mL) | 17,070 | NA | [ |
Zn2In2S5/Ti3C2(O, OH)x | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 100 mL), 2 wt% Pt | 12,983.8 | 8.96 (420 nm) | [ |
Zn2In2S5/MXene | 300 W Xe lamp (λ ≥ 400 nm) | TEOA/H2O mixture (40 mL, 10% vol TEOA) | 3042.8 | 2.13 (400 nm) | [ |
ZnIn2S4/Ti3C2/ZnIn2S4 | 300 W Xe lamp (λ ≥ 420 nm) | TEOA (10 vol%, 40 mL), 3 wt% Pt | 3475 | 11.14 (420 nm) | [ |
CdLa2S4/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 100 mL) | 11,182.4 | 15.6 (420 nm) | [ |
g-C3N4/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | TEOA (10 vol%, 100 mL) | 116.2 | NA | [ |
g-C3N4/Ti3C2/Pt | 300 W Xe lamp (simulated sunlight) | TEOA (10 vol%, 50 mL) | 5100 | 3.1 (420 nm) | [ |
g-C3N4/Ti3C2Tx | 350 W Xe lamp (λ > 400 nm) | TEOA (10 vol%, 3 mL) | 88 | 1.27 | [ |
Ti3C2/g-C3N4 | 200 W Hg lamp (λ > 400 nm) | TEOA (10 vol%, 40 mL), 3 wt% Pt | 72.3 | NA | [ |
Ti2C/g-C3N4 | Solar simulated (AM 1.5) | TEOA (10 vol%, 85 mL) | 950 | 4.3 (420 nm) | [ |
TiO2/Nb2CTx | 200 W Hg lamp (λ > 400 nm) | CH3OH (25 vol%, 40 mL) | 47 | 0.39 | [ |
Nb2O5/C/Nb2C | 200 W Hg lamp (285 nm ≤ λ ≤ 325 nm) | CH3OH (25 vol%, 40 mL) | 7.81 | 0.11 (305 nm) | [ |
Ti3C2 QDs/g-C3N4 | 300 W Xe lamp (AM 1.5) | TEOA (15 vol%, 100 mL) | 5111.8 | 3.654 | [ |
Table 1. Summary of low-dimensional MXenes-based nanostructures for photocatalytic H2 evolution via water splitting.
Catalyst | Light source | Reaction condition | H2 evolution Activity (µmol h-1 g-1) | AQE (%) | Refs. |
---|---|---|---|---|---|
TiO2/Ti3C2 | 300 W Xe lamp | CH3OH(10%)+chloroplatinic acid (3%, 400 μL) | 6979 | NA | [ |
Ti3C2/TiO2 | 350 W Xe lamp | Glycerinum (10 vol%, 80 mL) | 120 | 0.9 (365 nm) | [ |
Ti3C2@TiO2@MoS2 | 300 W Xe lamp (AM 1.5) | TEOA | 6425 | 4.61 (420 nm) | [ |
Ti3C2/P25 | 200 W Hg lamp (285 nm ≤ λ ≤ 325 nm) | CH3OH (25 vol%, 40 mL) | 2650 | 15.8 (305 nm) | [ |
Cu/TiO2@Ti3C2(OH)x | 300 W Xe lamp (simulated sunlight) | CH3OH (25 vol%, 7 vol%, 140 mL) | 860 | NA | [ |
TiO2/Ti3C2/UiO-66-NH2 | 300 W Xe lamp (350 nm < λ < 780 nm) | Na2S/Na2SO3 (0.1 M/0.1 M, 50 mL) | 1980 | NA | [ |
PtO@Ti3C2/TiO2 | 300 W Xe lamp | CH3OH (50 vol%, 100 mL) | 2540 | 4.2 (365 nm) | [ |
MoS2/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | CH3OH (30 vol%, 50 mL) | 6144 | NA | [ |
MoxS@TiO2@Ti3C2 | 300 W Xe lamp (AM 1.5) | TEOA | 10,506 | 7.54 | [ |
Ti3C2/CdS | 300 W Xe lamp (λ ≥ 420 nm) | Latic acid (18 vol%, 80 mL) | 14,342 | 40.1 (420 nm) | [ |
CdS/Ti3C2 | 300 WXe lamp (λ ≥ 420 nm) | Latic acid (10 wt%, 50 mL) | 2407 | 35.6 (420 nm) | [ |
CdS/Ti3C2Tx | 300 WXe lamp (λ ≥ 420 nm) | Latic acid (10 wt%, 50 mL) | 3226 | 47 (420 nm) | [ |
CdS@Ti3C2@CoO | 300 W Xe lamp (λ > 420 nm) | H2O (100 mL) | 134.46 | 0.06 (500 nm) | [ |
Ti3C2@Au@CdS | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 80 mL) | 17,070 | NA | [ |
Zn2In2S5/Ti3C2(O, OH)x | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 100 mL), 2 wt% Pt | 12,983.8 | 8.96 (420 nm) | [ |
Zn2In2S5/MXene | 300 W Xe lamp (λ ≥ 400 nm) | TEOA/H2O mixture (40 mL, 10% vol TEOA) | 3042.8 | 2.13 (400 nm) | [ |
ZnIn2S4/Ti3C2/ZnIn2S4 | 300 W Xe lamp (λ ≥ 420 nm) | TEOA (10 vol%, 40 mL), 3 wt% Pt | 3475 | 11.14 (420 nm) | [ |
CdLa2S4/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | Na2S/Na2SO3 (0.35 M/0.25 M, 100 mL) | 11,182.4 | 15.6 (420 nm) | [ |
g-C3N4/Ti3C2 | 300 W Xe lamp (λ > 420 nm) | TEOA (10 vol%, 100 mL) | 116.2 | NA | [ |
g-C3N4/Ti3C2/Pt | 300 W Xe lamp (simulated sunlight) | TEOA (10 vol%, 50 mL) | 5100 | 3.1 (420 nm) | [ |
g-C3N4/Ti3C2Tx | 350 W Xe lamp (λ > 400 nm) | TEOA (10 vol%, 3 mL) | 88 | 1.27 | [ |
Ti3C2/g-C3N4 | 200 W Hg lamp (λ > 400 nm) | TEOA (10 vol%, 40 mL), 3 wt% Pt | 72.3 | NA | [ |
Ti2C/g-C3N4 | Solar simulated (AM 1.5) | TEOA (10 vol%, 85 mL) | 950 | 4.3 (420 nm) | [ |
TiO2/Nb2CTx | 200 W Hg lamp (λ > 400 nm) | CH3OH (25 vol%, 40 mL) | 47 | 0.39 | [ |
Nb2O5/C/Nb2C | 200 W Hg lamp (285 nm ≤ λ ≤ 325 nm) | CH3OH (25 vol%, 40 mL) | 7.81 | 0.11 (305 nm) | [ |
Ti3C2 QDs/g-C3N4 | 300 W Xe lamp (AM 1.5) | TEOA (15 vol%, 100 mL) | 5111.8 | 3.654 | [ |
Fig. 6. (a) Schematic showing the synthesis procedure for the preparation of Ti3C2/TiO2 nanohybrids. TEM images of Ti3C2/TiO2 nanohybrids containing Ti3C2 with -F termination groups and -OH groups in the right. (b) Proposed photocatalytic mechanism of Ti3C2/TiO2 composites. Reproduced with permission [81]. Copyright 2019, Royal Society of Chemistry. (c) Photoreactivity of Ti3C2@TiO2@MoS2 catalysts. (d) SEM image of Ti3C2@TiO2@MoS2 nanohybrids. (e) A schematic illustration showing the charge separation and transfer processes in Ti3C2@TiO2@MoS2 nanohybrids under solar light excitation. Reproduced with permission [82]. Copyright 2019, Elsevier. (f) TEM image of monolayer Ti3C2. Inset: HRTEM. (g) Photocatalytic H2 evolution rates of the prepared TiO2, TC/TO with Ti3C2 monolayer, MTC/TO Ti3C2 multi-layer. Reproduced with permission [83]. Copyright 2019, American Chemical Society. Schematic illustrating the charge carrier transfer at the interface of Cu/TiO2@Ti3C2(OH)x. (h) during and (i) after the induction step of photoreaction, respectively. Reproduced with permission [84]. Copyright 2018, Elsevier.
Fig. 7. (a) Proposed photocatalytic mechanism toward H2 production of MoxS@TiO2@Ti3C2 nanostructures. (b) Photocatalytic H2 evolution rates of the as-prepared MoS2@TiO2@Ti3C2, MoxS@TiO2@Ti3C2 and TiO2, respectively. Reproduced with permission [88]. Copyright 2020, Elsevier. (c) Visible-light induced photoreactivity of CdS, Ti3C2 nanoparticles and CdS-based hybrids. Reproduced with permission [23]. Copyright 2017, Springer Nature. (d) Scheme for the energy level and charge separation in CdS@Ti3C2@CoO hierarchic tandem p-n heterojunction photocatalysts. Reproduced with permission [91]. Copyright 2020, Elsevier. SEM (e) and HRTEM (f) images of Zn2In2S5/Ti3C2(O, OH)x hybrid. In 3d (g) and O 1s (h) XPS spectra of Zn2In2S5/Ti3C2(O, OH)x hybrid. Reproduced with permission [93]. Copyright 2019, Elsevier. (i) SEM image of ZnIn2S4/Ti3C2/ZnIn2S4 composites. Reproduced with permission [94]. Copyright 2020, American Chemical Society. Ti 2p (j) and O 1s (k) XPS spectra of g-C3N4/Ti3C2 hybrids. Reproduced with permission [99]. Copyright 2018, Royal Society of Chemistry. (l) HRTEM image of Nb2O5/C/Nb2C composites. (m) Schematic showing the photocatalytic mechanism for Nb2O5/C/Nb2C. Reproduced with permission [103]. Copyright 2018, WILEY-VCH.
Fig. 8. (a) Band edge positions of Ti2CO2, Zr2CO2, Hf2CO2, Sc2CF2 and Sc2CO2 with respect to the redox potentials of H+/H2 and H2O/O2. (b) The imaginary part of the dielectric function of Zr2CO2 and Hf2CO2. (c) The respective electron and hole mobility for Zr2CO2 and Hf2CO2 as a function of x- and y-directions. (d) Schematic illustration for separation of charge carriers. Reproduced with permission [105]. Copyright 2016, Royal Society of Chemistry. (e) Top and side views of the bare and O-functionalized Ti2C MXenes. Reproduced with permission [106]. Copyright 2016, Royal Society of Chemistry. (f) The band edge positions of the unstrained and respective strained monolayer Ti2CO2 (yellow), Zr2CO2 (green) and Hf2CO2 (magneta). Reproduced with permission [107]. Copyright 2017, the Owner Societies. The band edge positions of monolayer, bilayer, trilayer and tetralayer (g) Zr2CO2 and (h) Hf2CO2. (i) The different surface potential of monolayer Sc2CO2. Reproduced with permission [108]. Copyright 2017, Royal Society of Chemistry. (j) The imaginary part of the dielectric function of (Zr0.5Hf0.5)2CO2. Reproduced with permission [109]. Copyright 2020, Elsevier. (k) Optical absorption of InSe, Zr2CO2 monolayers and InSe/Zr2CO2 nanostructures. (l) Schematic showing the mechanism of photocatalytic overall water splitting for InSe/Zr2CO2 nanostructures. Reproduced with permission [110]. Copyright 2019, American Chemical Society.
Catalyst | Light source | Reaction condition | CO2 photoreduction | Refs. | ||
---|---|---|---|---|---|---|
CO evolution rate (µmol h-1 g-1) | CH4 evolution rate (µmol h-1 g - 1) | CH3OH evolution rate (µmol h-1 g - 1) | ||||
TiO2/Ti3C2 | 300 W Xe lamp (simulated sunlight) | NaHCO3 (0.084 g) + HCl (4 M, 0.3 mL) | 4.4 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | NaHCO3 (1.26 g) + H2SO4 (2 M, 4 mL) | 5.19 | 0.044 | [ | |
Bi2WO6/Ti3C2 | Solar simulator | NaHCO3 (0.084 g) + H2SO4 (2 M, 0.3 mL) | 1.78 | 0.44 | [ | |
CeO2/Ti3C2/TiO2 | 300 W Xe lamp | 5 mL H2O | 4.4 | [ | ||
Co-Co LDH/Ti3C2Tx | 5 W LED lamp (400 nm < λ < 1000 nm) | [Ru(bpy)3]Cl2·6H2O (7.5 mg) + MeCN/H2O/TEOA (3 mL/2 mL/1 mL) | 12,500 | [ | ||
NiAl-LDH/ Ti3C2Tx | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O (7.5 mg) + MeCN/H2O/TEOA (6 mL/4 mL/2 qmL) | 2182.46 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | 15 mL H2O with a polytetrafluoroethylene inner tank | 0.99 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | CO2 + H2O | 11.21 µmol g-1 | [ | ||
Ti3C2/B-dopedg-C3N4 | 300 W Xe lamp (λ > 420 nm) | CO2 gas | 2.88 | 7.1 | [ | |
g-C3N4/Bt/Ti3C2 | 35 W HID lamp (λ ≥ 420 nm) | CO2 + H2O | 326 | 230 | [ | |
35 W HID lamp without UV filter | CO2 + H2O | 423.8 | 460 | |||
35 W HID lamp (λ ≥ 420 nm) | CO2 + Acetic acid (10 vol%) | 719 | 1909 | |||
Ti3C2 QDs/Cu2O | 300 W Xe lamp | CO2 + H2O | 78.5 | [ | ||
g-C3N4/Ti3C2 | 350 W Xe lamp | NaHCO3 (0.084 g) + H2SO4 (2 M, 0.3 mL) | 4.39 | 1.2 | [ |
Table 2. Summary of low-dimensional MXenes-based nanostructures for photocatalytic CO2 reduction.
Catalyst | Light source | Reaction condition | CO2 photoreduction | Refs. | ||
---|---|---|---|---|---|---|
CO evolution rate (µmol h-1 g-1) | CH4 evolution rate (µmol h-1 g - 1) | CH3OH evolution rate (µmol h-1 g - 1) | ||||
TiO2/Ti3C2 | 300 W Xe lamp (simulated sunlight) | NaHCO3 (0.084 g) + HCl (4 M, 0.3 mL) | 4.4 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | NaHCO3 (1.26 g) + H2SO4 (2 M, 4 mL) | 5.19 | 0.044 | [ | |
Bi2WO6/Ti3C2 | Solar simulator | NaHCO3 (0.084 g) + H2SO4 (2 M, 0.3 mL) | 1.78 | 0.44 | [ | |
CeO2/Ti3C2/TiO2 | 300 W Xe lamp | 5 mL H2O | 4.4 | [ | ||
Co-Co LDH/Ti3C2Tx | 5 W LED lamp (400 nm < λ < 1000 nm) | [Ru(bpy)3]Cl2·6H2O (7.5 mg) + MeCN/H2O/TEOA (3 mL/2 mL/1 mL) | 12,500 | [ | ||
NiAl-LDH/ Ti3C2Tx | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O (7.5 mg) + MeCN/H2O/TEOA (6 mL/4 mL/2 qmL) | 2182.46 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | 15 mL H2O with a polytetrafluoroethylene inner tank | 0.99 | [ | ||
Ti3C2/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | CO2 + H2O | 11.21 µmol g-1 | [ | ||
Ti3C2/B-dopedg-C3N4 | 300 W Xe lamp (λ > 420 nm) | CO2 gas | 2.88 | 7.1 | [ | |
g-C3N4/Bt/Ti3C2 | 35 W HID lamp (λ ≥ 420 nm) | CO2 + H2O | 326 | 230 | [ | |
35 W HID lamp without UV filter | CO2 + H2O | 423.8 | 460 | |||
35 W HID lamp (λ ≥ 420 nm) | CO2 + Acetic acid (10 vol%) | 719 | 1909 | |||
Ti3C2 QDs/Cu2O | 300 W Xe lamp | CO2 + H2O | 78.5 | [ | ||
g-C3N4/Ti3C2 | 350 W Xe lamp | NaHCO3 (0.084 g) + H2SO4 (2 M, 0.3 mL) | 4.39 | 1.2 | [ |
Fig. 9. SEM (a) and HRTEM (b) images of TiO2/Ti3C2 nanohybrids. (c) Photocatalytic reactivity of pristine TiO2 and TiO2/Ti3C2 nanohybrids. (d) Proposed photocatalytic mechanism of TiO2/Ti3C2 nanohybrids. Reproduced with permission [114]. Copyright 2018, Elsevier. (e) AFM image of Ti3C2/g-C3N4 composites. Inset: the corresponding height profiles marked in (e). (f) CO production rates of pristine ultrathin g-C3N4 and Ti3C2/g-C3N4 composites. Reproduced with permission [115]. Copyright 2020, Elsevier.
Fig. 10. (a) Schematic showing the preparation of 2D/2D Ti3C2/Bi2WO6 heterostructred-photocatalysts. (b) Proposed mechanism of CO2 photoreduction for Ti3C2/Bi2WO6. (c) Methane and methanol evolution rates from CO2 reduction in the presence of pristine Bi2WO6 and Ti3C2/Bi2WO6 nanostructures. Reproduced with permission [116]. Copyright 2018, WILEY-VCH. (d) Schematic illustration of the synthetic process of 3D Co-Co LDH/Ti3C2Tx nanocomposites. (e) Proposed photocatalytic mechanism of CO2 photoreduction for Co-Co LDH/Ti3C2Tx in the presence of Ru-based compound. Reproduced with permission [117]. Copyright 2019, Elsevier.
Fig. 11. Low-magnification (a) and high-magnification (b) of SEM images of 0D/1D Ti3C2/Cu2O nanostructures. (c) TEM image of Ti3C2/Cu2O nanostructures. Inset: TEM image of the magnified region marked in square. (d) Production of methanol as a function of time. Reproduced with permission [76]. Copyright 2018, WILEY-VCH. SEM (e) and HRTEM (f) images of 2D/2D/0D TiO2/g-C3N4/Ti3C2 heterostructures. The proposed mechanism of electron transfer in S-scheme heterojunction of TiO2/g-C3N4/Ti3C2: (g) before contact, (h) after contact, and (i) after contact upon illumination. Reproduced with permission [121]. Copyright 2020, Elsevier.
Fig. 12. (a) Proposed two reaction pathways for CO2 reduction. (b) Energy barriers calculation of hydrogenation of CO2 at Ov in monolayer Ti2CO2. I: CO2 → HCOO; Ⅱ: HCOO → HCOOH; the blue lines denote as desorption of HCOOH. Ⅲ: HCOOH → H2COOH; Ⅳ: H2COOH → HCHO + H2O. Reproduced with permission [122]. Copyright 2017, Royal Society of Chemistry.
[1] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
DOI URL |
[2] |
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. Rummeli, Chem. Soc. Rev. 48 (2019) 72-133.
DOI URL |
[3] |
X.C. Jiao, K. Zheng, L. Liang, X.D. Li, Y.F. Sun, Y. Xie, Chem. Soc. Rev. 49 (2020) 6592-6604.
DOI URL |
[4] |
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387-399.
DOI URL |
[5] |
G. Liao, Y. Gong, L. Zhang, H. Gao, G.-.J. Yang, B. Fang, Energy Environ. Sci. 12 (2019) 2080-2147.
DOI URL |
[6] | W.Y. Lei, X. Pang, G.L. Ge, G. Liu, Nano Today 39 (2021) 101183. |
[7] |
Y. Xia, J.G. Yu, Chem 6 (2020) 1039-1040.
DOI URL |
[8] |
X. Pang, S.X. Xue, T. Zhou, H.D. Yuan, C. Liu, W.Y. Lei, Prog. Chem. (2022), doi: 10.7536/PC210318.
DOI URL |
[9] | Y.W. Chen, L.L. Li, Q.L. Xu, W. Chen, Y.Q. Dong, J.J. Fan, D.K. Ma, Solar RRL 5 (2021) 2000541. |
[10] |
X. Pang, S.X. Xue, T. Zhou, Q.L. Xu, W.Y. Lei, Ceram. Int. 48 (2022) 3659-3668.
DOI URL |
[11] |
J.M. Luo, S.Q. Zhang, M. Sun, L.X. Yang, S.L. Luo, J.C. Crittenden, ACS Nano 13 (2019) 9811-9840.
DOI URL |
[12] |
Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[13] | R.J. Feng, K.W. Wan, X.Y. Sui, N. Zhao, H.X. Li, W.Y. Lei, J.G. Yu, X.F. Liu, X.H. Shi, M.L. Zhai, G. Liu, H. Wang, L.R. Zheng, M.H. Liu, Nano Today 37 (2021) 101080. |
[14] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[15] |
K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Mater. Today 30 (2019) 80-102.
DOI URL |
[16] | W.X. Meng, X.J. Liu, H.Q. Song, Y. Xie, X.L. Shi, M. Dargusch, Z.-.G. Chen, Z.Y. Tang, S.Y. Lu, Nano Today 40 (2021) 101273. |
[17] |
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6 (2012) 1322-1331.
DOI URL |
[18] |
W.Y. Lei, G. Liu, J. Zhang, M.H. Liu, Chem. Soc. Rev. 46 (2017) 3492-3509.
DOI URL |
[19] | R.J. Feng, W.Y. Lei, G. Liu, M.H. Liu, Adv. Mater. 30 (2018) e1804770. |
[20] | Q.J. Xiang, B. Cheng, J.G. Yu, Angew. Chem. Int. Ed. 54 (2015) 11350-11366. |
[21] |
J. Peng, X. Chen, W.-.J. Ong, X. Zhao, N. Li, Chem 5 (2019) 18-50.
DOI URL |
[22] |
Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.-.F. Wang, Nano-Micro Lett. 11 (2019) 79.
DOI URL |
[23] | J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, S.Z. Qiao, Nat. Commun. 8 (2017) 13907. |
[24] |
Z.Y. You, Y.L. Liao, X. Li, J.J. Fan, Q.J. Xiang, Nanoscale 13 (2021) 9463-9504.
DOI URL |
[25] |
B.B. Shao, Z.F. Liu, G.M. Zeng, H. Wang, Q.H. Liang, Q.Y. He, M. Cheng, C.Y. Zhou, L.B. Jiang, B. Song, J. Mater. Chem. A 8 (2020) 7508-7535.
DOI URL |
[26] | J.J. Wang, S. Lin, N. Tian, T.Y. Ma, Y.H. Zhang, H.W. Huang, Adv. Funct. Mater. 31 (2021) 2008008. |
[27] |
M.Z. Rahman, C.B. Mullins, Acc. Chem. Res. 52 (2019) 248-257.
DOI URL |
[28] |
W. Huang, W. Luo, Y.G. Li, Mater. Today 40 (2020) 160-172.
DOI URL |
[29] | L.Z. Liu, S.B. Wang, H.W. Huang, Y.H. Zhang, T.Y. Ma, Nano Energy 75 (2020) 104959. |
[30] | B.J. Ng, L.K. Putri, X.Y. Kong, Y.W. Teh, P. Pasbakhsh, S.P. Chai, Adv. Sci. 7 (2020) 1903171. |
[31] |
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29 (2017) 7633-7644.
DOI URL |
[32] |
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78-81.
DOI URL |
[33] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI URL PMID |
[34] |
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Bar-soum, Y. Gogotsi, Nat. Commun. 4 (2013) 1716.
DOI URL PMID |
[35] | M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, J. Am. Chem. Soc. 135 (2013) 15966-15969. |
[36] |
M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J. Billinge, M.W. Barsoum, Chem. Commun. 50 (2014) 9517-9520.
DOI URL |
[37] |
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, ACS Nano 9 (2015) 9507-9516.
DOI URL PMID |
[38] |
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, ACS Energy Lett. 1 (2016) 589-594.
DOI URL |
[39] |
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum, Adv. Funct. Mater. 26 (2016) 3118-3127.
DOI URL |
[40] |
J. Yang, M. Naguib, M. Ghidiu, L.-.M. Pan, J. Gu, J. Nanda, J. Halim, Y. Gogotsi, M.W. Barsoum, J. Am. Ceram. Soc. 99 (2016) 660-666.
DOI URL |
[41] |
R. Meshkian, Q.Z. Tao, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Acta Mater. 125 (2017) 476-480.
DOI URL |
[42] |
J. Zhou, X.H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S.Y. Du, Q. Huang, Angew. Chem. Int. Ed. 55 (2016) 5008-5013.
DOI URL PMID |
[43] |
J. Zhou, X.H. Zha, X.B. Zhou, F.Y. Chen, G.L. Gao, S.W. Wang, C. Shen, T. Chen, C.Y. Zhi, P. Eklund, S.Y. Du, J.M. Xue, W.Q. Shi, Z.F. Chai, Q. Huang, ACS Nano 11 (2017) 3841-3850.
DOI URL PMID |
[44] | F.F. Liu, J. Zhou, S.W. Wang, B.X. Wang, C. Shen, L.B. Wang, Q.K. Hu, Q. Huang, A.G. Zhou, J. Electrochem. Soc. 164 (2017) A709-A713. |
[45] | X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset, S. Hurand, P. Chartier, J. Rousseau, T. Cabioc’h, C. Coutanceau, V. Mauchamp, S. Célérier, J. Mater. Chem. A 5 (2017) 22012-22023. |
[46] |
T. Zhang, L.M. Pan, H. Tang, F. Du, Y.H. Guo, T. Qiu, J. Yang, J. Alloys Compd. 695 (2017) 818-826.
DOI URL |
[47] |
R. Meshkian, L.-.˚A. Näslund, J. Halim, J. Lu, M.W. Barsoum, J. Rosen, Scr. Mater. 108 (2015) 147-150.
DOI URL |
[48] |
L.B. Wang, H. Zhang, B. Wang, C.J. Shen, C.X. Zhang, Q.K. Hu, A.G. Zhou, B.Z. Liu, Electron. Mater. Lett. 12 (2016) 702-710.
DOI URL |
[49] |
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L. ˚A Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Chem. Mater. 26 (2014) 2374-2381.
DOI URL |
[50] |
A.H. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L.X. Song, Mater. Des. 114 (2017) 161-166.
DOI URL |
[51] | P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M.Q. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Nanoscale 8 (2016) 11385-11391. |
[52] |
H.H. Shi, P.P. Zhang, Z.C. Liu, S. Park, M.R. Lohe, Y.P. Wu, A.S. Nia, S. Yang, X.L. Feng, Angew. Chem. Int. Ed. 60 (2021) 8689-8693.
DOI URL |
[53] | S. Yang, P.P. Zhang, F.X. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X.L. Feng, Angew. Chem. Int. Ed. 57 (2018) 15491-15495. |
[54] |
M. Li, J. Lu, K. Luo, Y.B. Li, K.K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.˚A Persson, S.Y. Du, Z.F. Chai, Z.R. Huang, Q. Huang, J. Am. Chem. Soc. 141 (2019) 4730-4737.
DOI URL |
[55] |
Y.B. Li, H. Shao, Z.F. Lin, J. Lu, L.Y. Liu, B. Duployer, P.O.˚A. Persson, P. Ek-lund, L. Hultman, M. Li, K. Chen, X.H. Zha, S.Y. Du, P. Rozier, Z.F. Chai, E. Raymundo-Piñero, P.L. Taberna, P. Simon, Q. Huang, Nat. Mater. 19 (2020) 894-899.
DOI URL |
[56] |
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Science 341 (2013) 1502-1505.
DOI URL PMID |
[57] | J.N. Xuan, Z.Q. Wang, Y.Y. Chen, D.J. Liang, L. Cheng, X.J. Yang, Z. Liu, R.Z. Ma, T. Sasaki, F.X. Geng, Angew. Chem. Int. Ed. 55 (2016) 14569-14574. |
[58] | A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2 (2016) 1600255. |
[59] |
O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 27 (2015) 3501-3506.
DOI URL |
[60] |
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44 (2015) 9353-9358.
DOI URL |
[61] | Q.Z. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J. Palisaitis, L. Hult-man, M.W. Barsoum, P.O.˚A. Persson, J. Rosen, Nat. Commun. 8 (2017) 14949. |
[62] |
C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.k. Guo, N. Kang, X.-.L. Ma, H.-.M. Cheng, W.C. Ren, Nat. Mater. 14 (2015) 1135-1141.
DOI URL |
[63] | Q. Xue, H.J. Zhang, M.S. Zhu, Z.X. Pei, H.F. Li, Z.F. Wang, Y. Huang, Y. Huang, Q.H. Deng, J. Zhou, S.Y. Du, Q. Huang, C.Y. Zhi, Adv. Mater. 29 (2017) 1604847. |
[64] | G.F. Xu, Y.S. Niu, X.C. Yang, Z.Y. Jin, Y. Wang, Y.H. Xu, H.T. Niu, Adv. Opt. Mater. 6 (2018) 1800951. |
[65] | X.H. Yu, X.K. Cai, H.D. Cui, S.-.W. Lee, X.-.F. Yu, B.l. Liu, Nanoscale 9 (2017) 17859-17864. |
[66] |
T.R. Zhang, X. Jiang, G.C. Li, Q.F. Yao, J.Y. Lee, ChemNanoMat 4 (2018) 56-60.
DOI URL |
[67] | F.M. Yang, Y.Q. Ge, T. Yin, J. Guo, F. Zhang, X. Tang, M. Qiu, W.Y. Liang, N. Xu, C. Wang, Y.F. Song, S.X. Xu, S.S. Xiao, ACS Appl. Nano Mater. 3 (2020) 11850-11860. |
[68] | X.S. Li, F. Liu, D.P. Huang, N. Xue, Y.Y. Dang, M.Q. Zhang, L.L. Zhang, B. Li, D. Liu, L. Wang, H. Liu, X.T. Tao, Adv. Funct. Mater. 30 (2020) 2000308. |
[69] |
X. Chen, X.K. Sun, W. Xu, G.C. Pan, D.L. Zhou, J.Y. Zhu, H. Wang, X. Bai, B. Dong, H.W. Song, Nanoscale 10 (2018) 1111-1118.
DOI URL PMID |
[70] | Q. Xu, W.J. Yang, Y.Y. Wen, S.K. Liu, Z. Liu, W.-.J. Ong, N. Li, Appl. Mater. Today 16 (2019) 90-101. |
[71] | H. Cheng, L.X. Ding, G.F. Chen, L.L. Zhang, J. Xue, H.H. Wang, Adv. Mater. 30 (2018) 1803694. |
[72] | Q.W. Guan, J.F. Ma, W.J. Yang, R. Zhang, X.J. Zhang, X.X. Dong, Y.T. Fan, L.L. Cai, Y. Cao, Y.L. Zhang, N. Li, Q. Xu, Nanoscale 11 (2019) 14123-14133. |
[73] | Q. Xu, J.F. Ma, W. Khan, X.B. Zeng, N. Li, Y. Cao, X.L. Zhao, M. Xu, Chem. Com- mun. 56 (2020) 6648-6651. |
[74] | S.Y. Lu, L.Z. Sui, Y. Liu, X. Yong, G.J. Xiao, K.J. Yuan, Z.Y. Liu, B.Z. Liu, B. Zou, B. Yang, Adv. Sci. 6 (2019) 1801470. |
[75] | G.H. Yang, J.L. Zhao, S.Z. Yi, X.J. Wan, J.N. Tang, Sens. Actuators B Chem. 309 (2020) 127735. |
[76] | Z.P. Zeng, Y.B. Yan, J. Chen, P. Zan, Q.H. Tian, P. Chen, Adv. Funct. Mater. 29 (2019) 1806500. |
[77] |
Y.H. Wang, C.L. Li, X.J. Han, D.W. Liu, H.H. Zhao, Z.N. Li, P. Xu, Y.C. Du, A.C.S. Appl, ACS Appl. Nano Mater. 1 (2018) 5366-5376.
DOI URL |
[78] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[79] | X.C. Kong, H.M. Huang, Z.Y. Li, Y.Q. Liang, Z.G. Li, S.L. Zhu, J. Mater. Sci. Tech- nol. 80 (2021) 171-178. |
[80] | Y. Zhuang, Y.F. Liu, X.F. Meng, Appl. Sur. Sci. 496 (2019) 143647. |
[81] |
Y. Li, D.N. Zhang, X.H. Feng, Y.L. Liao, Q.Y. Wen, Q.J. Xiang, Nanoscale Adv. 1 (2019) 1812-1818.
DOI URL |
[82] |
Y.J. Li, Z.H. Yin, G.R. Ji, Z.Q. Liang, Y.J. Xue, Y.C. Guo, J. Tian, X.Z. Wang, H.Z. Cui, Appl. Catal. B Environ. 246 (2019) 12-20.
DOI URL |
[83] |
T.M. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H.B. Ji, Z.Z. Qin, Z.L. Wu, ACS Appl. Energy Mater. 2 (2019) 4640-4651.
DOI URL |
[84] |
C. Peng, P. Wei, X.Y. Li, Y.P. Liu, Y.H. Cao, H.J. Wang, H. Yu, F. Peng, L.Y. Zhang, B.S. Zhang, K.L. Lv, Nano Energy 53 (2018) 97-107.
DOI URL |
[85] |
P. Tian, X. He, L. Zhao, W.X. Li, W. Fang, H. Chen, F.Q. Zhang, Z.H. Huang, H.L. Wang, Int. J. Hydrog. Energy 44 (2019) 788-800.
DOI URL |
[86] |
R. Chen, P.F. Wang, J. Chen, C. Wang, Y.H. Ao, Appl. Sur. Sci. 473 (2019) 11-19.
DOI URL |
[87] |
J.H. Zhang, C. Xing, F. Shi, Int. J. Hydrog. Energy 45 (2020) 6291-6301.
DOI URL |
[88] | Y.J. Li, L. Ding, Z.Q. Liang, Y.J. Xue, H.Z. Cui, J. Tian, Chem. Eng. J. 383 (2020) 123178. |
[89] |
T.M. Di, L.Y. Zhang, B. Cheng, J.G. Yu, J.J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[90] | R. Xiao, C.X. Zhao, Z.Y. Zou, Z.P. Chen, L. Tian, H.T. Xu, H. Tang, Q.Q. Liu, Z.X. Lin, X.F. Yang, Appl. Catal. B Environ. 268 (2020) 118382. |
[91] | Z.Z. Ai, K. Zhang, B. Chang, Y.L. Shao, L. Zhang, Y.Z. Wu, X.P. Hao, Chem. Eng. J. 383 (2020) 123130. |
[92] |
J.J. Yin, F.K. Zhan, T.F. Jiao, W.H. Wang, G.C. Zhang, J.H. Jiao, G.Y. Jiang, Q.R. Zhang, J.M. Gu, Q.M. Peng, Sci. China Mater. 63 (2020) 2228-2238.
DOI URL |
[93] |
H. Wang, Y.M. Sun, Y. Wu, W.G. Tu, S.Y. Wu, X.Z. Yuan, G.M. Zeng, Z.C.J. Xu, S.Z. Li, J.W. Chew, Appl. Catal. B Environ. 245 (2019) 290-301.
DOI URL |
[94] | G.C. Zuo, Y.T. Wang, W.L. Teo, A.M. Xie, Y. Guo, Y.X. Dai, W.Q. Zhou, D. Jana, Q.M. Xian, W. Dong, Y.L. Zhao, Angew. Chem. Int. Ed. 59 (2020) 11287-11292. |
[95] | L. Cheng, Q. Chen, J. Li, H. Liu, Appl. Catal. B Environ. 267 (2020) 118379. |
[96] |
Z. Zhang, Y.Y. Kang, L.-.C. Yin, P. Niu, C. Zhen, R. Chen, X.D. Kang, F.Y. Wu, G. Liu, J. Mater. Sci. Technol. 95 (2021) 167-171.
DOI URL |
[97] | J.M. Li, L. Zhao, S.M. Wang, J. Li, G.H. Wang, J. Wang, Appl. Sur. Sci. 515 (2020) 145922. |
[98] | X.Q. An, W. Wang, J.P. Wang, H.Z. Duan, J.T. Shi, X.L. Yu, Phys. Chem. Chem. Phys. 20 (2018) 11405-11411. |
[99] |
Y.L. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dal’Agnese, G. Chen, X.-.F. Wang, J. Mater. Chem. A 6 (2018) 9124-9131.
DOI URL |
[100] |
T.M. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H.B. Ji, Z.Z. Qin, Z.L. Wu, Nanoscale 11 (2019) 8138-8149.
DOI URL |
[101] | M.M. Shao, Y.F. Shao, J.W. Chai, Y.J. Qu, M.Y. Yang, Z.L. Wang, M. Yang, W.F. Ip, C.T. Kwok, X.Q. Shi, Z.G. Lu, S.J. Wang, X.S. Wang, H. Pan, J. Mater. Chem. A 5 (2017) 16748-16756. |
[102] |
H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z.L. Wu, ChemSusChem 9 (2016) 1490-1497.
DOI URL PMID |
[103] |
T.M. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z.Z. Qin, Z.H. Guo, Z.L. Wu, ChemSusChem 11 (2018) 688-699.
DOI URL |
[104] | Y.J. Li, L. Ding, Y.C. Guo, Z.Q. Liang, H.Z. Cui, J. Tian, ACS Appl. Mater. Interfaces 11 (2019) 41440-41447. |
[105] | Z.L. Guo, J. Zhou, L.G. Zhu, Z.M. Sun, J. Mater. Chem. A 4 (2016) 11446-11452. |
[106] | H.J. Zhang, G. Yang, X.Q. Zuo, H.B. Tang, Q. Yang, G. Li, J. Mater. Chem. A 4 (2016) 12913-12920. |
[107] | S.A. Khan, B. Amin, L.Y. Gan, I. Ahmad, Phys. Chem. Chem. Phys. 19 (2017) 14738-14744. |
[108] | C.-.F. Fu, X.X. Li, Q.Q. Luo, J.L. Yang, J. Mater. Chem. A 5 (2017) 24972-24980. |
[109] | Y.G. Zhang, B.S. Sa, J. Zhou, Z.M. Sun, Comput. Mater. Sci. 186 (2021) 110013. |
[110] | Y. He, M. Zhang, J.-j. Shi, Y.-l. Cen, M. Wu, J. Phys. Chem. C 123 (2019) 12781-12790. |
[111] | Y.Z. Zhang, B.Q. Xia, J.R. Ran, K. Davey, S.Z. Qiao, Adv. Energy Mater. 10 (2020) 1903879. |
[112] | S.N. Talapaneni, G. Singh, I.Y. Kim, K. AlBahily, A.H. Al-Muhtaseb, A.S. Karakoti, E. Tavakkoli, A. Vinu, Adv. Mater. 32 (2020) 1904635. |
[113] |
X. Zhi, Y. Jiao, Y. Zheng, K. Davey, S.-.Z. Qiao, J. Mater. Chem. A 9 (2021) 6345-6351.
DOI URL |
[114] |
J.X. Low, L.Y. Zhang, T. Tong, B.J. Shen, J.G. Yu, J. Catal. 361 (2018) 255-266.
DOI URL |
[115] | C. Yang, Q.Y. Tan, Q. Li, J. Zhou, J.J. Fan, B. Li, J. Sun, K.L. Lv, Appl. Catal. B Environ. 268 (2020) 118738. |
[116] | S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, Adv. Funct. Mater. 28 (2018) 1800136. |
[117] | W.Y. Chen, B. Han, Y.Y. Xie, S.J. Liang, H. Deng, Z. Lin, Chem. Eng. J. 391 (2020) 123519. |
[118] |
J.M. Hu, J. Ding, Q. Zhong, J. Colloid Interface Sci. 582 (2021) 647-657.
DOI URL |
[119] |
Q.J. Tang, Z.X. Sun, S. Deng, H.Q. Wang, Z.B. Wu, J. Colloid Interface Sci. 564 (2020) 406-417.
DOI URL |
[120] | M. Tahir, B. Tahir, Chem. Eng. J. 400 (2020) 125868. |
[121] | F. He, B.C. Zhu, B. Cheng, J.G. Yu, W.K. Ho, W. Macyk, Appl. Catal. B Environ. 272 (2020) 119006. |
[122] | X. Zhang, Z.H. Zhang, J.L. Li, X.D. Zhao, D.H. Wu, Z. Zhou, J. Mater. Chem. A 5 (2017) 12899-12903. |
[123] | J.-.X. Yang, W.-.B. Yu, C.-.F. Li, W.-.D. Dong, L.-.Q. Jiang, N. Zhou, Z.-.P. Zhuang, J. Liu, Z.-.Y. Hu, H. Zhao, Y. Li, L.H. Chen, J.G. Hu, B.-.L. Su, Chem. Eng. J. 420 (2021) 129695. |
[124] | M.Y. Ding, R. Xiao, C.X. Zhao, D. Bukhvalov, Z.P. Chen, H.T. Xu, H. Tang, J.S. Xu, X.F. Yang, Solar RRL 5 (2020) 2000414. |
[125] | M. Ou, J.K. Li, Y.Z. Chen, S.P. Wan, S.L. Zhao, J. Wang, Y.P. Wu, C.C. Ye, Y.H. Chen, Chem. Eng. J. 424 (2021) 130170. |
[126] | Y.Z. Wu, W. Xu, W.C. Tang, Z.K. Wang, Y. Wang, Z.X. Lv, Y. Zhang, W. Zhong, H.-.L. Cai, R.S. Yang, X.S. Wu, Nano Energy 90 (2021) 106532. |
[127] | M. Ding, R. Xiao, C. Zhao, D. Bukhvalov, Z. Chen, H. Xu, H. Tang, J. Xu, X. Yang, Solar RRL 5 (2020) 2000414. |
[128] |
H.Q. Wang, Q.J. Tang, Z.B. Wu, ACS Sustainable Chem. Eng. 9 (2021) 8425-8434.
DOI URL |
[1] | Yuanhui Zuo, Wenchao Sheng, Wenquan Tao, Zhuo Li. Direct methanol fuel cells system-A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation [J]. J. Mater. Sci. Technol., 2022, 114(0): 29-41. |
[2] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[3] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[4] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[5] | Zhang Hui, Hu Tao, Wang Xiaohui, Zhou Yanchun. Structural defects in MAX phases and their derivative MXenes: A look forward [J]. J. Mater. Sci. Technol., 2020, 38(0): 205-220. |
[6] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[7] | Minghui Xiong, Juntao Yan, Bo Chai, Guozhi Fan, Guangsen Song. Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdS heterojunctions with significantly boosted photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 179-188. |
[8] | Ke Wang, Baodan Liu, Jing Li, Xiaoyuan Liu, Yang Zhou, Xinglai Zhang, Xiaoguo Bi, Xin Jiang. In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance [J]. J. Mater. Sci. Technol., 2019, 35(4): 615-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||