J. Mater. Sci. Technol. ›› 2022, Vol. 114: 29-41.DOI: 10.1016/j.jmst.2021.10.031
• Research Article • Previous Articles Next Articles
Yuanhui Zuo, Wenchao Sheng, Wenquan Tao, Zhuo Li*()
Received:
2021-07-28
Revised:
2021-10-04
Accepted:
2021-10-19
Published:
2022-07-01
Online:
2022-01-15
Contact:
Zhuo Li
About author:
* zhuoli2013@tongji.edu.cn (Z. Li).Yuanhui Zuo, Wenchao Sheng, Wenquan Tao, Zhuo Li. Direct methanol fuel cells system-A review of dual-role electrocatalysts for oxygen reduction and methanol oxidation[J]. J. Mater. Sci. Technol., 2022, 114: 29-41.
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | Eonset / E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- | Porous Pt nanotubes | 0.5 M H2SO4 + 1 M CH3OH (5 mV/s) | 1.62 mA cm-2 | 0.1 M HClO4 | 0.889 | 0.369 mA cm-2 88 Ma mg-1Pt | [ |
Pt- | Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support | 0.5 M H2SO4 + 10 v/v% CH3OH(10 mV/s) | 92.4 mA cm-2 | 0.5 M H2SO4 | 0.900 | - | [ |
Pt- | Facet and dimensionality control of Pt nanostructures | 0.1 M HClO4+ 0.1 M CH3OH (50 mV/s) | 5.84 mA cm-2 1.312 mA µg-1Pt | 0.1 M HClO4 | - | 490 mA mg-1Pt | [ |
Pt- | 2D circular Pt nanodendrites | 0.5 M H2SO4 + 1 M CH3OH (20 mV/s) | - | 0.1 M HClO4 | - | 142.9 ± 4.1 mA mg-1 | [ |
Pt- | branched Pt | 0.5 M H2SO4 + 0.1 M CH3OH (25 mV/s) | - | 0.5 M H2SO4 | 0.800 | 11.97 mA cm-2 | [ |
Pd- | Pd-CoMn2O4/ graphene nanosheets | 1 M KOH + 1 M CH3OH (50 mV/s) | 0.553 mA cm-2 | 1 M KOH | - | 2.20 mA cm-2 | [ |
Table 1. Morphologies, electrolyte and performances of monometallic catalysts.
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | Eonset / E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- | Porous Pt nanotubes | 0.5 M H2SO4 + 1 M CH3OH (5 mV/s) | 1.62 mA cm-2 | 0.1 M HClO4 | 0.889 | 0.369 mA cm-2 88 Ma mg-1Pt | [ |
Pt- | Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support | 0.5 M H2SO4 + 10 v/v% CH3OH(10 mV/s) | 92.4 mA cm-2 | 0.5 M H2SO4 | 0.900 | - | [ |
Pt- | Facet and dimensionality control of Pt nanostructures | 0.1 M HClO4+ 0.1 M CH3OH (50 mV/s) | 5.84 mA cm-2 1.312 mA µg-1Pt | 0.1 M HClO4 | - | 490 mA mg-1Pt | [ |
Pt- | 2D circular Pt nanodendrites | 0.5 M H2SO4 + 1 M CH3OH (20 mV/s) | - | 0.1 M HClO4 | - | 142.9 ± 4.1 mA mg-1 | [ |
Pt- | branched Pt | 0.5 M H2SO4 + 0.1 M CH3OH (25 mV/s) | - | 0.5 M H2SO4 | 0.800 | 11.97 mA cm-2 | [ |
Pd- | Pd-CoMn2O4/ graphene nanosheets | 1 M KOH + 1 M CH3OH (50 mV/s) | 0.553 mA cm-2 | 1 M KOH | - | 2.20 mA cm-2 | [ |
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- Pd- | Pd@Pt Core-Shell | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.376 mA µg-1Pt | 0.5 M H2SO4 | 0.862 | - | [ |
Pd- Pb- | Pd3Pb nanowire networks | 1 M KOH + 1 M CH3OH (50 mV/s) | 3.2 mA µg-1metal | 0.1 M KOH | - | 15.7 mA cm-2 at 0.90 V - | [ |
Pd- Ni- | Pd@Ni core-shell nanoparticles | 0.5 M KOH + 0.5 M CH3OH (25 mV/s) | - | 0.1 M KOH | 0.769 | 1.70 mA cm-2 at 0.80 V | [ |
Pt- Pd- | Pt3Pd1 alloys on CeO2/C | 0.5 M H2SO4 + 1 M CH3OH (20 mV/s) | - | 0.1 M HClO4 | +- | 142.9 ± 4.1 mA mg-1 | [ |
Pt- Pd- | PtPd sheet-assembled alloy | 0.5 M H2SO4 + 0.1 M CH3OH (25 mV/s) | - | 0.5 M H2SO4 | 0.800 | 11.97 mA cm-2 | [ |
Pt- Au- | Ptn/Au/carbon papers by Cu underpotential deposition | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.34 mA µg-1Pt | 0.5 M H2SO4 | - | - | [ |
Pt- Au- | Pt-Au electrochemically deposited on graphene | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.394 mA µg-1Pt | 0.5 M H2SO4 | 0.830 | - | [ |
Pt- Au- | Au-Pt alloyed nanowire networks | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.590 mA µg-1Pt | 0.1 M KOH | - | 0.103 mA µg-1Pt | [ |
Pt- Au- | Pt-Au string-bead nanochain | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 48.03 mA cm-2 | 0.1 M KOH | - | - | [ |
Pt- Au- | PtAu alloyed superlattice arrays | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 41.77 mA cm-2 | 0.1 M KOH | 0.801 | - | [ |
Pt- Au- | dendrite-like PtAu porous nanoclusters | 1 M KOH+ 0.5 M CH3OH (50 mV/s) | 0.557 mA µg-1metal | 0.1 M KOH | - | 0.027 mA µg-1metal | [ |
Pt- Ag- | core-shell Ag@Pt | 0.5 M KOH + 0.5 M CH3OH (50 mV/s) | 0.593 mA µg-1 | 0.1 M HClO4 | 0.814 | 0.077 mA µg-1 Pt at 0.85 V | [ |
Pd- Au- | core-shell AuPd@Pd | 1 M KOH + 1 M CH3OH (50 mV/s) | 0.695 mA cm-2 Pd 0.650 mA µg-1 Pd | 0.1 M KOH | - | 0.401 mA cm-2Pd0.174 mA µg-1 Pd | [ |
Pt- Cu- | nanoporous Pt-Cu alloy | 0.5 M KOH + 0.5 M CH3OH (50 mV/s) | 1.38 mA cm-2 Pt 0.36 mA µg-1Pt | 0.1 M HClO4 | 0.905 | 0.61 mA cm-2Pt at 0.9 V 0.189 mA µg-1 Pt | [ |
Pt- Cu- | five-fold-twinned PtCu | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 18.2 mA cm-2 Pt 2.26 mA µg-1 Pt | 0.1 M KOH | - | 1.71 mA cm-2Pt at 0.9 V 0.211 mA µg-1 Pt | [ |
Pt- Cu- | chain-like PtCu nanowires | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.755 mA µg-1Pt | 0.1 M HClO4 | 0.862 | 0.685 mA cm-2 at 0.9 V 0.203 mA µg-1 Pt | [ |
Pt- Cu- | PtCu nanodendrites with surface nitridation | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 3.12 mA µg-1 Pt | 0.1 M HClO4 | - | 0.685 mA cm-2 at 0.9 V | [ |
Pt- Co- | flower-like Pt3Co | 0.1 M HClO4 + 0.1 M CH3OH (50 mV/s) | 2.92 mA cm-2 Pt 0.385 mA µg-1Pt | 0.1 M HClO4 | 0.805 | 0.951 mAcm-2 at 0.65 V 0.125 mA µg-1 Pt | [ |
Pt- Co- | PtCo mesoporous nanospheres | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.91 mA cm-20.72 mA µg-1Pt | 0.1 M HClO4 | - | - | [ |
Pt- Co- | Pt71Co29 lamellar nanoflowers | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 0.666 mA µg-1Pt 2.51 mA cm-2 | 0.1 M HClO4 | - | 0.128.29 mA µg-1 Pt at 0.75 V | [ |
Pt- Ni- | PtNi cross double dumbbell-like nanostructures | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.33 mA µg-1Pt | 0.1 M HClO4 | 0.930 | 1.33 mA µg-1Pt | [ |
Pt- Ni | PtNi alloy supported on CeOx nanosheet | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 4.07 mA cm-2 | 0.1 M HClO4 | 0.978 | 1.19 mA µg-1Pt | [ |
Pt- Ni- | Pt-Ni-P mesoporous nanocages | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 2.28 mA cm-2 1.22 mA µg-1Pt | 0.1 M HClO4 | 0.940 | 2.35 mA cm-2 at 0.9 V 1.21 mA µg-1Pt | [ |
Pt- Fe- | FePt supported on RGO | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | - | 0.1 M HClO4 | - | 2.35 mA cm-2 at 0.9 V | [ |
Pt- Bi- | hcp-PtBi/fcc-Pt core/shell nanoplates | 0.1 M HClO4 + 0.1 M CH3OH (50 mV/s) | 3.18 mA cm-2Pt 1.1 mA µg-1Pt | 0.1 M HClO4 | - | 1.04 mA cm-2Pt at 0.9 V | [ |
Table 2. Morphologies, electrolyte and performances of bimetallic catalysts.
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- Pd- | Pd@Pt Core-Shell | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.376 mA µg-1Pt | 0.5 M H2SO4 | 0.862 | - | [ |
Pd- Pb- | Pd3Pb nanowire networks | 1 M KOH + 1 M CH3OH (50 mV/s) | 3.2 mA µg-1metal | 0.1 M KOH | - | 15.7 mA cm-2 at 0.90 V - | [ |
Pd- Ni- | Pd@Ni core-shell nanoparticles | 0.5 M KOH + 0.5 M CH3OH (25 mV/s) | - | 0.1 M KOH | 0.769 | 1.70 mA cm-2 at 0.80 V | [ |
Pt- Pd- | Pt3Pd1 alloys on CeO2/C | 0.5 M H2SO4 + 1 M CH3OH (20 mV/s) | - | 0.1 M HClO4 | +- | 142.9 ± 4.1 mA mg-1 | [ |
Pt- Pd- | PtPd sheet-assembled alloy | 0.5 M H2SO4 + 0.1 M CH3OH (25 mV/s) | - | 0.5 M H2SO4 | 0.800 | 11.97 mA cm-2 | [ |
Pt- Au- | Ptn/Au/carbon papers by Cu underpotential deposition | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.34 mA µg-1Pt | 0.5 M H2SO4 | - | - | [ |
Pt- Au- | Pt-Au electrochemically deposited on graphene | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.394 mA µg-1Pt | 0.5 M H2SO4 | 0.830 | - | [ |
Pt- Au- | Au-Pt alloyed nanowire networks | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.590 mA µg-1Pt | 0.1 M KOH | - | 0.103 mA µg-1Pt | [ |
Pt- Au- | Pt-Au string-bead nanochain | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 48.03 mA cm-2 | 0.1 M KOH | - | - | [ |
Pt- Au- | PtAu alloyed superlattice arrays | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 41.77 mA cm-2 | 0.1 M KOH | 0.801 | - | [ |
Pt- Au- | dendrite-like PtAu porous nanoclusters | 1 M KOH+ 0.5 M CH3OH (50 mV/s) | 0.557 mA µg-1metal | 0.1 M KOH | - | 0.027 mA µg-1metal | [ |
Pt- Ag- | core-shell Ag@Pt | 0.5 M KOH + 0.5 M CH3OH (50 mV/s) | 0.593 mA µg-1 | 0.1 M HClO4 | 0.814 | 0.077 mA µg-1 Pt at 0.85 V | [ |
Pd- Au- | core-shell AuPd@Pd | 1 M KOH + 1 M CH3OH (50 mV/s) | 0.695 mA cm-2 Pd 0.650 mA µg-1 Pd | 0.1 M KOH | - | 0.401 mA cm-2Pd0.174 mA µg-1 Pd | [ |
Pt- Cu- | nanoporous Pt-Cu alloy | 0.5 M KOH + 0.5 M CH3OH (50 mV/s) | 1.38 mA cm-2 Pt 0.36 mA µg-1Pt | 0.1 M HClO4 | 0.905 | 0.61 mA cm-2Pt at 0.9 V 0.189 mA µg-1 Pt | [ |
Pt- Cu- | five-fold-twinned PtCu | 0.5 M KOH + 1 M CH3OH (50 mV/s) | 18.2 mA cm-2 Pt 2.26 mA µg-1 Pt | 0.1 M KOH | - | 1.71 mA cm-2Pt at 0.9 V 0.211 mA µg-1 Pt | [ |
Pt- Cu- | chain-like PtCu nanowires | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.755 mA µg-1Pt | 0.1 M HClO4 | 0.862 | 0.685 mA cm-2 at 0.9 V 0.203 mA µg-1 Pt | [ |
Pt- Cu- | PtCu nanodendrites with surface nitridation | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 3.12 mA µg-1 Pt | 0.1 M HClO4 | - | 0.685 mA cm-2 at 0.9 V | [ |
Pt- Co- | flower-like Pt3Co | 0.1 M HClO4 + 0.1 M CH3OH (50 mV/s) | 2.92 mA cm-2 Pt 0.385 mA µg-1Pt | 0.1 M HClO4 | 0.805 | 0.951 mAcm-2 at 0.65 V 0.125 mA µg-1 Pt | [ |
Pt- Co- | PtCo mesoporous nanospheres | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.91 mA cm-20.72 mA µg-1Pt | 0.1 M HClO4 | - | - | [ |
Pt- Co- | Pt71Co29 lamellar nanoflowers | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 0.666 mA µg-1Pt 2.51 mA cm-2 | 0.1 M HClO4 | - | 0.128.29 mA µg-1 Pt at 0.75 V | [ |
Pt- Ni- | PtNi cross double dumbbell-like nanostructures | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.33 mA µg-1Pt | 0.1 M HClO4 | 0.930 | 1.33 mA µg-1Pt | [ |
Pt- Ni | PtNi alloy supported on CeOx nanosheet | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 4.07 mA cm-2 | 0.1 M HClO4 | 0.978 | 1.19 mA µg-1Pt | [ |
Pt- Ni- | Pt-Ni-P mesoporous nanocages | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 2.28 mA cm-2 1.22 mA µg-1Pt | 0.1 M HClO4 | 0.940 | 2.35 mA cm-2 at 0.9 V 1.21 mA µg-1Pt | [ |
Pt- Fe- | FePt supported on RGO | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | - | 0.1 M HClO4 | - | 2.35 mA cm-2 at 0.9 V | [ |
Pt- Bi- | hcp-PtBi/fcc-Pt core/shell nanoplates | 0.1 M HClO4 + 0.1 M CH3OH (50 mV/s) | 3.18 mA cm-2Pt 1.1 mA µg-1Pt | 0.1 M HClO4 | - | 1.04 mA cm-2Pt at 0.9 V | [ |
Fig. 3. (a) Catalysts synthesis Schematic illustration of Pt3Pd1-CeO2/C. (b) Pt3Pd1-CeO2/C, Pt-CeO2/C, and Pt/C MOR performance in 0.1 M HClO4 + 1 M Methanol under the scan rate of 50 mV s-1. (c) MOR mechanism on the Pt3Pd1-CeO2/C catalysts surface. (d) Comparison of ORR polarization curves for Pt3Pd1-CeO2/C and Pt-CeO2/C catalysts with that for 20% Pt/C, in O2-saturated 0.1 M HClO4. (e) Comparison of measured SA and MA at 0.90 V for all corresponding catalysts. (f, g) Schematic illustration of the growth mechanism of PtPd SAANs. (a-e) Reprinted with authorization from Ref. [27]. Copyright (2017) American Chemical Society. (f-g) Reprinted with authorization from Ref. [28]. Copyright (2017), Elsevier.
Fig. 4. (a, b) Pt-Ni-P MNCs SEM and TEM images. (c) ORR polarization curves and Tafel plots of the catalysts in an O2-saturated 0.1 M HClO4 solution at the scan rate of 5 mV s-1 and the rotation rate of 1600 rpm. (d) Mass activities of the MOR for the catalysts recorded in a hybrids of 0.5 M H2SO4 and 1 M CH3OH with a scan rate of 50 mV s-1. (e) Schematic image of the Pt-Ni-P MNCs formation process. (f) Schematic image of the PtBi/C catalysts mechanism. (g) ORR polarization curves of commercial Pt/C and PtBi/C catalysts. (a-e) Reprinted with authorization from Ref. [52]. Copyright (2019) The Royal Society of Chemistry. (f-g) Reprinted with authorization from Ref. [54]. Copyright (2018) American Chemical Society.
Fig. 5. (a) The surface structure diagram of PtIrCo-alloy NPs immersed in Carbon Aerogel matrix. (b) Illustration of the surface structure of PtIrCo-alloy NPs and the preparation procedure of ternary TeCuPt NWs. (a) Reprinted with authorization from Ref. [59]. Copyright (2015), with permission from Elsevier. (b) Reprinted with authorization from Ref. [65]. Copyright (2015) The Royal Society of Chemistry.
Fig. 6. (a) CoAuPd Nanocatalysts Formation Mechanism. (b) Formation mechanism and dealloying process of the CoAuPd nanocatalysts. (a) Reprinted with authorization from Ref. [68]. Copyright (2018) American Chemical Society. (b) Reprinted with authorization from Ref. [69]. Copyright (2019), with permission from Elsevier.
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | Eonset / E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- Ru- Co- | RuCoPt nanocomposite | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.801 mA µg-1 | 0.1 M HClO4 | 0.857 | - | [ |
Pt- Ru- Fe- | PtRuFe/N-doped graphene | 0.5 M H2SO4 + 1 M CH3OH (5 mV/s) | 1.33 mA cm-2 | 0.5 M H2SO4 | - | 5.36 mA cm-2 | [ |
Pt- Au- Cu- | Pt10Au10Cu64/C | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 2.42 mA µg-1 | 0.1 M HClO4 | - | 0.450 mA cm-2 | [ |
Pt- Ir- Co- | PtIrCo-alloy nanoparticles supported on 3D carbon aerogel matrix | 0.1 M HClO4 + 1 M CH3OH (50 mV/s) | 0.58 mA µg-1Pt0.80 mA cm-2Pt | 0.1 M HClO4 | - | 0.95 mA µg-1Pt1.55 mA cm-2Pt | [ |
Pt- Pd- Ir- | Pd@PtIr mesoporous nanospheres | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.23 mA µg-1Pt | 0.1 M HClO4 | 0.950 | 2.08 mA cm-2 at 0.9 V1.03 mA µg-1Pt | [ |
Pt- Cu- Ti- | nanoporous PtCuTi alloy | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.721 mA µg-1Pt | 0.1 M HClO4 | 0.908 | 0.256 mA µg-1Pt | [ |
Pt- Cu- Co- | Vertex-Reinforced PtCuCo Nanoframes | 0.1 M HClO4 + 1 M CH3OH (50 mV/s) | 57.5 mA cm-24.11 mA µg-1Pt | 0.1 M HClO4 | 0.934 | 1.56 mA µg-1Pt at 0.9 V5.03 mA cm-2Pt | [ |
Pt- Ni- Co- | (220) facet-terminated PtNiCo@C-N nanocubes | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.165 mA µg-1 | 0.1 M HClO4 | 0.840 | - | [ |
Pt- Ni- Pb- | PtNiPb ternary nano-pompons | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 2.4 mA cm-21.16 mA µg-1Pt | 0.1 M HClO4 | - | 0.976 mA cm-2 at 0.9 V0.449 mA µg-1Pt | [ |
Pt- Cu- Te- | TeCuPt alloy nanowires | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.245 mA µg-1Pt | 0.5 M H2SO4 | 0.830 | 0.29 mA cm-20.059 mA µg-1Pt | [ |
Pd- Au- Co- | 3D Thornbush-like Trimetallic CoAuPd | 1 M NaOH + 1 M CH3OH (50 mV/s) | 0.495 mA µg-1Pd | 0.1 M KOH | 0.968 | 0.193 mA cm-2 at 0.9 V | [ |
Pd- Au- Co- | CoAuPd@AuPd core-shell | 1 M NaOH + 1 M CH3OH (50 mV/s) | 0.629 mA µg-1Pd | 0.1 M KOH | 0.930 | 0.081 mA µg-1Pd | [ |
Table 3. Morphologies, electrolyte and performances of trimetallic catalysts.
Classification | Morphologies and structures | Performances | Ref. | ||||
---|---|---|---|---|---|---|---|
MOR activity | ORR activity at 1600 rpm | ||||||
Electrolyte Scanning rate | Specific activity or/and Mass activity | Electrolyte | Eonset / E1/2 (V vs RHE) | Specific activity or/and Mass activity | |||
Pt- Ru- Co- | RuCoPt nanocomposite | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.801 mA µg-1 | 0.1 M HClO4 | 0.857 | - | [ |
Pt- Ru- Fe- | PtRuFe/N-doped graphene | 0.5 M H2SO4 + 1 M CH3OH (5 mV/s) | 1.33 mA cm-2 | 0.5 M H2SO4 | - | 5.36 mA cm-2 | [ |
Pt- Au- Cu- | Pt10Au10Cu64/C | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 2.42 mA µg-1 | 0.1 M HClO4 | - | 0.450 mA cm-2 | [ |
Pt- Ir- Co- | PtIrCo-alloy nanoparticles supported on 3D carbon aerogel matrix | 0.1 M HClO4 + 1 M CH3OH (50 mV/s) | 0.58 mA µg-1Pt0.80 mA cm-2Pt | 0.1 M HClO4 | - | 0.95 mA µg-1Pt1.55 mA cm-2Pt | [ |
Pt- Pd- Ir- | Pd@PtIr mesoporous nanospheres | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.23 mA µg-1Pt | 0.1 M HClO4 | 0.950 | 2.08 mA cm-2 at 0.9 V1.03 mA µg-1Pt | [ |
Pt- Cu- Ti- | nanoporous PtCuTi alloy | 0.5 M H2SO4 + 0.5 M CH3OH (50 mV/s) | 0.721 mA µg-1Pt | 0.1 M HClO4 | 0.908 | 0.256 mA µg-1Pt | [ |
Pt- Cu- Co- | Vertex-Reinforced PtCuCo Nanoframes | 0.1 M HClO4 + 1 M CH3OH (50 mV/s) | 57.5 mA cm-24.11 mA µg-1Pt | 0.1 M HClO4 | 0.934 | 1.56 mA µg-1Pt at 0.9 V5.03 mA cm-2Pt | [ |
Pt- Ni- Co- | (220) facet-terminated PtNiCo@C-N nanocubes | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 1.165 mA µg-1 | 0.1 M HClO4 | 0.840 | - | [ |
Pt- Ni- Pb- | PtNiPb ternary nano-pompons | 0.1 M HClO4 + 0.5 M CH3OH (50 mV/s) | 2.4 mA cm-21.16 mA µg-1Pt | 0.1 M HClO4 | - | 0.976 mA cm-2 at 0.9 V0.449 mA µg-1Pt | [ |
Pt- Cu- Te- | TeCuPt alloy nanowires | 0.5 M H2SO4 + 1 M CH3OH (50 mV/s) | 0.245 mA µg-1Pt | 0.5 M H2SO4 | 0.830 | 0.29 mA cm-20.059 mA µg-1Pt | [ |
Pd- Au- Co- | 3D Thornbush-like Trimetallic CoAuPd | 1 M NaOH + 1 M CH3OH (50 mV/s) | 0.495 mA µg-1Pd | 0.1 M KOH | 0.968 | 0.193 mA cm-2 at 0.9 V | [ |
Pd- Au- Co- | CoAuPd@AuPd core-shell | 1 M NaOH + 1 M CH3OH (50 mV/s) | 0.629 mA µg-1Pd | 0.1 M KOH | 0.930 | 0.081 mA µg-1Pd | [ |
Fig. 7. (a) Schematic diagram of the MoS2QDs@Ti3C2TxQDs@MWCNTs composite formation process as the bifunctional catalyst for ORR and MOR in alkaline solution. (b) Schematic process of constructing the 3D Pt-WN/CNT-rGO catalyst. (a) Reprinted with authorization from Ref. [73]. Copyright (2019), with permission from Elsevier. (b) Reprinted with authorization from Ref. [75]. Copyright (2016), with permission from Springer.
[1] | X.M. Ren, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12-L15. |
[2] |
K.M. Yu, G.Q. Ning, J.T. Yang, Y. Wang, X. Zhang, Y.C. Qin, C.L. Luan, L. Yu, Y. Jiang, X.B. Luan, Z. Dong, H. Wang, X.P. Dai, J. Catal. 375 (2019) 267-278.
DOI URL |
[3] | M. Borghei, J. Lehtonen, L. Liu, O.J. Rojas, Adv. Mater. 30 (2018) 1703691. |
[4] | H. Fang, J.H. Yang, M. Wen, Q.S. Wu, Adv. Mater. 30 (2018) 1705698. |
[5] |
S.Y. Li, X.W. Tang, H.L. Jia, H.L. Li, G.Q. Xie, X.J. Liu, X. Lin, H.J. Qiu, J. Catal. 383 (2020) 164-171.
DOI URL |
[6] | Y. Yu, S.J. You, J.N. Du, Z.P. Xing, Y. Dai, H. Chen, Z. Cai, N.Q. Ren, J.L. Zou, Appl. Catal. B 259 (2019) 118043. |
[7] | P. Joghee, J.N. Malik, S. Pylypenko, R. O’Hayre, MRS Energy Sustain. 2 (2015) E3. |
[8] |
L. Tao, M. Qiao, R. Jin, Y. Li, Z.H. Xiao, Y.Q. Wang, N.N. Zhang, C. Xie, Q.G. He, D.C. Jiang, G. Yu, Y.F. Li, S.Y. Wang, Angew. Chem. Int. Ed. 58 (2019) 1019-1024.
DOI URL PMID |
[9] |
A.A. Ensafi, M. Jafari-Asl, B. Rezaei, Electrochim. Acta 130 (2014) 397-405.
DOI URL |
[10] |
S.L. Yin, Z.Q. Wang, X.Q. Qian, D.D. Yang, Y. Xu, X.N. Li, L. Wang, H.J. Wang, ACS Sustain. Chem. Eng. 7 (2019) 7960-7968.
DOI URL |
[11] |
S.M. Alia, G. Zhang, D. Kisailus, D.S. Li, S. Gu, K. Jensen, Y.S. Yan, Adv. Funct. Mater. 20 (2010) 3742-3746.
DOI URL |
[12] |
V.T.T. Ho, N.G. Nguyen, C.J. Pan, J.H. Cheng, J. Rick, W.N. Su, J.F. Lee, H.S. Sheu, B.J. Hwang, Nano Energy 1 (2012) 687-695.
DOI URL |
[13] |
L.Z. Bu, Y.G. Feng, J.L. Yao, S.J. Guo, J. Guo, X.Q. Huang, Nano Res. 9 (2016) 2811-2821.
DOI URL |
[14] |
Y. Chen, Z.X. Fan, Z.C. Zhang, W.X. Niu, C.L. Li, N.L. Yang, B. Chen, H. Zhang, Chem. Rev. 118 (2018) 6409-6455.
DOI URL PMID |
[15] | W.J. Huang, X.L. Kang, C. Xu, J.H. Zhou, J. Deng, Y.G. Li, S. Cheng, Adv. Mater. 30 (2018) 1706962. |
[16] |
H.Y. Liu, J.Q. Qin, S.Q. Zhao, Z.M. Gao, Q. Fu, Y.J. Song, Electrochem. Commun. 98 (2019) 53-57.
DOI URL |
[17] | S. Ghosh, R.K. Sahu, C.R. Raj, J. Mater. Chem. 21 (2011) 11973-11980. |
[18] |
B.K. Jena, C.R. Raj, Langmuir 23 (2007) 4064-4070.
DOI URL |
[19] |
C.S. Sharma, R. Awasthi, R.N. Singh, A.S.K. Sinha, Electrochim. Acta 136 (2014) 166-175.
DOI URL |
[20] |
X.Y. Guorong Chen, Zixuan Xie, Fengling Zhao, Zhiyou Zhou, Qiang Yuan, J. Colloid Interface Sci. 562 (2020) 244-251.
DOI URL |
[21] |
H.D. Mai, S. Kim, H. Yoo, J. Catal. 388 (2020) 20-29.
DOI URL |
[22] |
Y.Y. Feng, L.X. Bi, Z.H. Liu, D.S. Kong, Z.Y. Yu, J. Catal. 290 (2012) 18-25.
DOI URL |
[23] |
Y.L. Du, K.L. Lv, B.Q. Su, N.O. Zhang, C.M. Wang, J. Appl. Electrochem. 39 (2009) 2409-2414.
DOI URL |
[24] | H. Zhang, Y.J. Yin, Y.J. Hu, C.Y. Li, P. Wu, S.H. Wei, C.X. Cai, J. Phys. Chem. C 114 (2010) 11861-11867. |
[25] | Q.R. Shi, C.Z. Zhu, C.X. Bi, H.B. Xia, M.H. Engelhard, D. Du, Y.H. Lin, J. Mater. Chem. A 5 (2017) 23952-23959. |
[26] | Y.S. Dimitrios K. Perivoliotis, Kazu Suenaga, Nikos Tagmatarchis, ACS Appl. En- ergy Mater. 1 (2018) 3869-3880. |
[27] |
A. Bin Yousaf, M. Imran, N. Uwitonze, A. Zeb, S.J. Zaidi, T.M. Ansari, G. Yas-meen, S. Manzoor, J. Phys. Chem. C 121 (2017) 2069-2079.
DOI URL |
[28] |
Y.C. Shi, L.P. Mei, A.J. Wang, T. Yuan, S.S. Chen, J.J. Feng, J. Colloid Interface Sci. 504 (2017) 363-370.
DOI URL |
[29] | M. Khosravi, M.K. Amini International, Int. J. Hydrogen Energy 35 (2010) 10527-10538. |
[30] |
Y.J. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C.X. Cai, Phys. Chem. Chem. Phys. 13 (2011) 4083-4094.
DOI URL |
[31] | P. Song, S.S. Li, L.L. He, J.J. Feng, L. Wu, S.X. Zhong, A.J. Wang, RSC Adv. 5 (2015) 87061-87068. |
[32] |
L.L. He, J.N. Zheng, P. Song, S.X. Zhong, A.J. Wang, Z.J. Chen, J.J. Feng, J. Power Sources 276 (2015) 357-364.
DOI URL |
[33] |
J.J. Feng, L.L. He, R. Fang, Q.L. Wang, J.H. Yuan, A.J. Wang, J. Power Sources 330 (2016) 140-148.
DOI URL |
[34] |
X.W. Xie, J.J. Lv, L. Liu, A.J. Wang, J.J. Feng, Q.Q. Xu, Int. J. Hydrogen Energy 42 (2017) 2104-2115.
DOI URL |
[35] | N.S.K. Gowthaman, B. Sinduja, S. Shankar, S.A. John, Sustain. Energy Fuels 2 (2018) 1588-1599. |
[36] |
J.Y. Cao, M.W. Guo, J.Y. Wu, J. Xu, W.C. Wang, Z.D. Chen, J. Power Sources 277 (2015) 155-160.
DOI URL |
[37] | P. Holt-Hindle, Q.F. Yi, G.S. Wu, K. Koczkur, A.C. Chen, J. Electrochem. Soc. 155 (2008) K5-K9. |
[38] |
J. Uribe-Godinez, V. Garcia-Montalvo, O. Jimenez-Sandoval, Int. J. Hydrogen Energy 39 (2014) 9121-9127.
DOI URL |
[39] |
J.N. Zheng, S.S. Li, X. Ma, F.Y. Chen, A.J. Wang, J.R. Chen, J.J. Feng, J. Power Sources 262 (2014) 270-278.
DOI URL |
[40] |
C.Z. Li, T.Y. Liu, T. He, B. Ni, Q. Yuan, X. Wang, Nanoscale 10 (2018) 4670-4674.
DOI URL |
[41] |
J.Z. Sun, J. Shi, J.L. Xu, X.T. Chen, Z.H. Zhang, Z.Q. Peng, J. Power Sources 279 (2015) 334-344.
DOI URL |
[42] |
Z.C. Zhang, Z.M. Luo, B. Chen, C. Wei, L. Zhao, J.Z. Chen, X. Zhang, Z.C. Lai, Z.X. Fan, C.L. Tan, M.T. Zhao, Q.P. Lu, B. Li, Y. Zong, C.C. Yan, G.X. Wang, Z.J.C. Xu, H. Zhang, Adv. Mater. 28 (2016) 8712-8717.
DOI URL |
[43] |
J.Y. Cao, Y.Y. Du, M.M. Dong, Z.D. Chen, J. Xu, J. Alloy. Compd. 747 (2018) 124-130.
DOI URL |
[44] |
T. Song, H. Xue, N. Guo, J. Sun, L. Qin, L. Guo, K. Huang, F. He, Q. Wang, Chem. Commun. 56 (2020) 7136-7139.
DOI URL |
[45] |
J.N. Zheng, L.L. He, C. Chen, A.J. Wang, K.F. Ma, J.J. Feng, J. Power Sources 268 (2014) 744-751.
DOI URL |
[46] | Y.X. Ma, L.S. Yin, T. Yang, Q.L. Huang, M.S. He, H. Zhao, D. Zhang, M.Y. Wang, Z.W. Tong, ACS Appl. Mater. Interfaces 9 (2017) 36164-36172. |
[47] | H.J. Wang, H.J. Yu, Y.H. Li, S.L. Yin, H.R. Xue, X.N. Li, Y. Xu, L. Wang, Nanotech- nology 29 (2018). |
[48] |
L. Zhang, X.F. Zhang, X.L. Chen, A.J. Wang, D.M. Han, Z.G. Wang, J.J. Feng, J. Colloid Interface Sci. 536 (2019) 556-562.
DOI URL |
[49] | T. Tamaki, Y. Yamada, H. Kuroki, T. Yamaguchi, J. Electrochem. Soc. 164 (2017) F858-F860. |
[50] |
W.H. Gong, Z. Jiang, R.F. Wu, Y. Liu, L. Huang, N. Hu, P. Tsiakaras, P.K. Shen, Appl. Catal. B 246 (2019) 277-283.
DOI URL |
[51] | Y. Kwon, Y. Kim, J.W. Hong, Y. Whang, S. Kim, D.H. Wi, H.R. Byon, S.W. Han, J. Mater. Chem. A 8 (2020) 25842-25849. |
[52] |
K. Deng, Y. Xu, D.D. Yang, X.Q. Qian, Z.C. Dai, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, J. Mater. Chem. A 7 (2019) 9791-9797.
DOI URL |
[53] | R. Kannan, A .A. Silva, F.M. Cardoso, G. Gupta, Z. Aslam, S. Sharma, R. Stein-berger-Wilckens, RSC Adv. 5 (2015) 36993-36998. |
[54] |
Y.N. Qin, M.C. Luo, Y.J. Sun, C.J. Li, B.L. Huang, Y. Yang, Y.J. Li, L. Wang, S.J. Guo, ACS Catal. 8 (2018) 5581-5590.
DOI URL |
[55] |
N. Hodnik, M. Bele, S. Hocevar, Electrochem. Commun. 23 (2012) 125-128.
DOI URL |
[56] |
Q. Zhao, G. Zhang, G.R. Xu, Y.J. Li, B.C. Liu, X. Gong, D.F. Zheng, J. Zhang, Q. Wang, Appl. Surf. Sci. 389 (2016) 181-189.
DOI URL |
[57] | M. Rethinasabapathy, S.M. Kang, Y. Haldorai, M. Jankiraman, N. Jonna, S.R. Choe, Y.S. Huh, B. Natesan, Int. J. Hydrogen Energy 42 (2017) 30738-30749. |
[58] |
X. Wang, L.J. Zhang, H.Y. Gong, Y.L. Zhu, H.H. Zhao, Y. Fu, Electrochim. Acta 212 (2016) 277-285.
DOI URL |
[59] |
P. Kolla, A. Smirnova, Electrochim. Acta 182 (2015) 20-30.
DOI URL |
[60] |
K. Deng, Y. Xu, Z.C. Dai, H.J. Yu, S.L. Yin, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, Chem. Asian J. 14 (2019) 3868-3874.
DOI URL |
[61] | Y. Wang, K.B. Yin, J. Zhang, C.H. Si, X.T. Chen, L.F. Lv, W.S. Ma, H. Gao, Z.H. Zhang, J. Mater. Chem. A 4 (2016) 14657-14668. |
[62] | T. Kwon, M. Jun, H.Y. Kim, A. Oh, J. Park, H. Baik, S.H. Joo, K. Lee, Adv. Funct. Mater. 28 (2018) 1706440. |
[63] | Q. Wang, Q. Zhao, Y.G. Su, G. Zhang, G.R. Xu, Y.J. Li, B.C. Liu, D.F. Zheng, J. Zhang, J. Mater. Chem. A 4 (2016) 12296-12307. |
[64] | N. Cheng, L. Zhang, H. Jiang, Y.J. Zhou, S.W. Yu, L.Y. Chen, H.B. Jiang, C.Z. Li, Nanoscale 11 (2019) 16945-16953. |
[65] |
H.B. Li, C. Ren, S.L. Xu, L. Wang, Q.L. Yue, R. Li, Y.F. Zhang, Q.W. Xue, J.F. Liu, J. Mater. Chem. A 3 (2015) 5850-5858.
DOI URL |
[66] | O.O. Fashedemia, K.I. Ozoemena, Phys. Chem. Chem. Phys. 15 (2013) 20982-20991. |
[67] | T.T. Li, S. Li, Y.P. Zuo, G.L. Zhu, H.Y. Han, Mater. Today Energy 12 (2019) 179-185. |
[68] |
L.M. Luo, R.H. Zhang, D. Chen, Q.Y. Hu, X.W. Zhou, ACS Appl. Energy Mater. 1 (2018) 2619-2629.
DOI URL |
[69] |
L.M. Luo, W. Zhan, R.H. Zhang, D. Chen, Q.Y. Hu, Y.F. Guo, X.W. Zhou, J. Power Sources 412 (2019) 142-152.
DOI URL |
[70] |
S.F. Fu, C.Z. Zhu, D. Du, Y.H. Lin, ACS Appl. Mater. Interfaces 8 (2016) 6110-6116.
DOI URL |
[71] | L. Huang, M. Wei, N. Hu, P. Tsiakaras, P.K. Shen, Appl. Catal. B 258 (2019) 119460. |
[72] |
X.T. Chen, C.H. Si, Y.L. Gao, J. Frenzel, J.Z. Sun, G. Eggeler, Z.H. Zhang, J. Power Sources 273 (2015) 324-332.
DOI URL |
[73] |
X.L. Yang, Q.J. Jia, F.H. Duan, B. Hu, M.H. Wang, L.H. He, Y.P. Song, Z.H. Zhang, Appl. Surf. Sci. 464 (2019) 78-87.
DOI URL |
[74] | S. Chen, D. Huang, D. Liu, H. Sun, W. Yan, J. Wang, M. Dong, X. Tong, W. Fan, Appl. Catal. B 291 (2021) 120067. |
[75] |
H.J. Yan, M.C. Meng, L. Wang, A.P. Wu, C.G. Tian, L. Zhao, H.G. Fu, Nano Res. 9 (2016) 329-343.
DOI URL |
[76] |
S. Sharma, B.G. Pollet, J. Power Sources 208 (2012) 96-119.
DOI URL |
[77] |
J.N. Tiwari, W.G. Lee, S. Sultan, M. Yousuf, A.M. Harzandi, V. Vij, K.S. Kim, ACS Nano 11 (2017) 7729-7735.
DOI URL |
[78] |
C.S. Liu, X.C. Liu, G.C. Wang, R.P. Liang, J.D. Qiu, J. Electroanal. Chem. 728 (2014) 41-50.
DOI URL |
[79] |
J.H. Ma, L. Wang, X. Mu, Y.L. Cao, J. Colloid Interface Sci. 457 (2015) 102-107.
DOI URL |
[80] |
X. Mu, Z.Q. Xu, Y.F. Ma, Y.H. Xie, H.Y. Mi, J.H. Ma, Electrochim. Acta 253 (2017) 171-177.
DOI URL |
[81] | G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B 108 (2004) 19960-19966. |
[82] |
X. Li, H.J. Wang, H. Yu, Z.W. Liu, F. Peng, J. Power Sources 260 (2014) 1-5.
DOI URL |
[83] |
J.Y. Xu, D. Aili, Q.F. Li, C. Pan, E. Christensen, J.O. Jensen, W. Zhang, G.Y. Liu, X.D. Wang, N.J. Bjerrum, J. Mater. Chem. A 1 (2013) 9737-9745.
DOI URL |
[84] | Y. Chen, J. Chen, J. Zhang, Y. Luo, C. Zhang, Y. Xue, G. Wang, R. Wang, J. Alloy. Compd. 873 (2021) 159827. |
[85] |
S.H. Joo, K. Kwon, D.J. You, C. Pak, H. Chang, J.M. Kim, Electrochim. Acta 54 (2009) 5746-5753.
DOI URL |
[86] |
J. Zeng, C. Francia, C. Gerbaldi, M.A. Dumitrescu, S. Specchia, P. Spinelli, J. Solid State Electrochem. 16 (2012) 3087-3096.
DOI URL |
[87] |
Z.X. Yan, M.M. Zhang, J.M. Xie, H.E. Wang, W. Wei, J. Power Sources 243 (2013) 48-53.
DOI URL |
[88] |
M.K. Jeon, K.R. Lee, W.S. Lee, H. Daimon, A. Nakahara, S.I. Woo, J. Power Sources 185 (2008) 927-931.
DOI URL |
[89] |
M. Yaldagard, M. Jahanshahi, N. Seghatoleslami, Appl. Surf. Sci. 317 (2014) 496-504.
DOI URL |
[90] |
Z.Y. Yang, M. Chen, M. Xia, M. Wang, X.D. Wang, Appl. Surf. Sci. 487 (2019) 655-663.
DOI URL |
[91] |
Y.H. Wang, J. Su, L. Dong, P.J. Zhao, Y. Zhang, W.P. Wang, S.P. Jia, J.B. Zang, ChemCatChem 9 (2017) 3982-3988.
DOI URL |
[92] |
Z.X. Yan, G.Q. He, P.K. Shen, Z.B. Luo, J.M. Xie, M. Chen, J. Mater. Chem. A 2 (2014) 4014-4022.
DOI URL |
[93] |
Z.X. Yan, J.M. Xie, P.K. Shen, J. Power Sources 286 (2015) 239-246.
DOI URL |
[94] |
Y. Zhang, J.B. Zang, S.P. Jia, P.F. Tian, C. Han, Y.H. Wang, Appl. Surf. Sci. 412 (2017) 327-334.
DOI URL |
[95] | N. Mohan, L. Cindrella, Int. J. Hydrogen Energy 42 (2017) 21719-21731. |
[96] |
N.R. Elezovic, B.M. Babic, V.R. Radmilovic, S.L. Gojkovic, N.V. Krstajic, L.M. Vracar, J. Power Sources 175 (2008) 250-255.
DOI URL |
[97] | C.Y. Zhang, Y. Dai, H. Chen, Y.Y. Ma, B.J. Jing, Z. Cai, Y.Q. Duan, B. Tang, J.L. Zou, J. Mater. Chem. A 6 (2018) 22636-22644. |
[98] | C. Shi, X. Maimaitiyiming, Int. J. Hydrogen Energy 46 (2021) 10247-10258. |
[99] | C.J. Shi, X. Maimaitiyiming, J. Alloy. Compd. 867 (2021) 158732. |
[100] | C. Shi, X. Maimaitiyiming, J. Alloy. Compd. 883 (2021) 160726. |
[101] | Y. Zhang, J.B. Zang, L. Dong, X.Z. Cheng, Y.L. Zhao, Y.H. Wang, J. Mater. Chem. A 2 (2014) 17815-17819. |
[102] | R. Dhiman, S.N. Stamatin, S.M. Andersen, P. Morgen, E.M. Skou, J. Mater. Chem. A 1 (2013) 15509-15516. |
[103] |
X.T. Liu, X. Wu, K. Scott, Catal. Sci. Technol. 4 (2014) 3891-3898.
DOI URL |
[104] | J. Li, X.Q. Lin, J. Electrochem. Soc. 154 (2007) B1074-B1079. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||