J. Mater. Sci. Technol. ›› 2022, Vol. 114: 172-179.DOI: 10.1016/j.jmst.2021.11.018
• Research Article • Previous Articles Next Articles
Zhengyi Maoa,b, Mengke Huoa, Fucong Lyua, Yongsen Zhoua, Yu Bua, Lei Wana, Lulu Pana, Jie Panc, Hui Liua, Jian Lua,b,d,e,f,*()
Received:
2021-08-19
Revised:
2021-10-14
Accepted:
2021-11-05
Published:
2022-07-01
Online:
2022-01-15
Contact:
Jian Lu
About author:
* jianlu@cityu.edu.hk (J. Lu).Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties[J]. J. Mater. Sci. Technol., 2022, 114: 172-179.
Fig. 1. Preparation of HBC. (a) Fabrication process of HBC. (b) Schematic of the components of the HBC. (c, d) The mechanical performances of swelled and dried HBC.
Fig. 2. Microstructures of HBC during hydration and dehydration. (a) The variation in the DP and water content with swelling and drying time. (b) The SEM images of HBC with different treatment times. (i) Solvent absorption for 6 h and (ii) 2 h. (iii) Fabricated HBC and (iv) solvent evaporation for 2 h. Scale bars for the upper and under rows are 50 μm and 10 μm, respectively. (c) Reversibility of the “brick and mortar” structure for several swelling and drying cycles. Completely dried HBC after 3, 9, and 5 cycles. The domains were colored by image J based on their orientations. (d) The orientation of alumina platelets after many cycles. All samples exhibit a similar peak at 0°.
Fig. 3. Mechanical tests of HBC. (a) Uniaxial tensile tests of HBCs with different swelling times. Inset shows a dumb-bell-shaped sample for uniaxial tests. (b) The relationship between Young's modulus and swelling time. (c) Uniaxial tensile tests result from HBCs with different solvent evaporation times. Inset shows the stress-strain curves of samples dried for 4 h and 24 h. (d) The relationship between Young's modulus and drying time. The scale bars are 50 µm, 10 µm, and 5 µm, respectively. (e) The variation of the ultimate stress with swelling time or drying time. (f) Left frame shows the mechanism of hydrogel network dominated stretch (State I) in (e). The SEM image shows the porous hydrogel matrix. Right frame shows the mechanism of hydrogel block dominated stretch (State II) in (e). The SEM image shows the dehydrated polymer matrix and the embedded alumina platelets.
Fig. 4. Fracture toughness of the HBC (a) Stress-strain curve of HBC sample without notch. (b) Stress-strain curve of the sample with a notch. (c) Tension test of HBC with a notch. λ represents the strain of the HBC. (d) Tough mechanism of HBC compared with pristine hydrogel. (e) Fracturing surface of HBC.
Fig. 5. Tunable mechanical property and high fracture toughness of HBC. (a) Comparison of HBC's tunable Young's modulus range with other biomaterials. (b) Comparison of fracture toughness and Young's moduli among HBC and other reported hydrogels.
Fig. 6. Demonstration of HBC as actuator. (a) The fabricated HBC is flat and soft. After solvent evaporation the structure is concave and stiff. When placed back in water it bent to another side due to HBC swelling. (b) Measurement of the holding force of the bend actuator. The actuator was connected with a tensile tester and the ring was fixed on the ground.
[1] | Q. Ze, X. Kuang, S. Wu, J. Wong, S.M. Montgomery, R. Zhang, J.M. Kovitz, F. Yang, H.J. Qi, R. Zhao, Adv. Mater. 32 (2020) 1906657. |
[2] | Q. Ge, A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, M.L. Dunn, Sci. Rep. 6 (2016) 31110. |
[3] | A. Kotikian, R.L. Truby, J.W. Boley, T.J. White, J.A. Lewis, Adv. Mater. 30 (2018) 1706164. |
[4] |
H. Wei, Q. Zhang, Y. Yao, L. Liu, Y. Liu, J. Leng, ACS Appl. Mater. Interfaces 9 (2017) 876-883.
DOI URL |
[5] |
Z. Ding, C. Yuan, X. Peng, T. Wang, H.J. Qi, M.L. Dunn, Sci. Adv. 3 (2017) e1602890.
DOI URL |
[6] |
Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 3 (2012) 1270.
DOI URL |
[7] | E.A. Moschou, S.F. Peteu, L.G. Bachas, M.J. Madou, S. Daunert, Chem. Mater. 16 (2004) 2499-2502. |
[8] |
J. Xia, Y. Noguchi, X. Xu, T. Odaira, Y. Kimura, M. Nagasako, T. Omori, R. Kainuma, Science 369 (2020) 855-858.
DOI URL PMID |
[9] | W. Shan, S. Diller, A. Tutcuoglu, C. Majidi, Smart Mater. Struct. 24 (2015) 65001. |
[10] |
P.G.M.G.B. Stachowiak, Acta Mater 36 (1988) 291-297.
DOI URL |
[11] |
B. Gadot, O.R. Martinez, S. Rolland, D. Bouvard, D. Rodney, L. Orgéas, Acta Mater 96 (2015) 311-323.
DOI URL |
[12] | R. Granberry, K. Eschen, B. Holschuh, J. Abel, Adv. Mater. Technol. 4 (2019) 1900548. |
[13] |
N. Kong, Q. Peng, H. Li, Adv. Funct. Mater. 24 (2014) 7310-7317.
DOI URL |
[14] |
X. Le, W. Lu, H. Xiao, L. Wang, C. Ma, J. Zhang, Y. Huang, T. Chen, ACS Appl. Mater. Interfaces 9 (2017) 9038-9044.
DOI URL |
[15] |
X.N. Zhang, Y.J. Wang, S. Sun, L. Hou, P. Wu, Z.L. Wu, Q. Zheng, Macromolecules 51 (2018) 8136-8146.
DOI URL |
[16] | T. Nonoyama, Y.W. Lee, K. Ota, K. Fujioka, W. Hong, J.P. Gong, Adv. Mater. 32 (2020) 1905878. |
[17] |
J.H. Lee, J. Park, J. Park, H. Ahn, J. Jaworski, J.H. Jung, Nat. Commun. 6 (2015) 6650.
DOI URL PMID |
[18] |
P. Calvert, Adv. Mater. 21 (2009) 743-756.
DOI URL |
[19] |
J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 15 (2003) 1155-1158.
DOI URL |
[20] |
M.A. Haque, T. Kurokawa, G. Kamita, J.P. Gong, Macromolecules 44 (2011) 8916-8924.
DOI URL |
[21] | B. Liang, H. Zhao, Q. Zhang, Y. Fan, Y. Yue, P. Yin, L. Guo, ACS Appl. Mater. Interfaces 8 (2016) 28816-28823. |
[22] |
K. Chen, J. Ding, S. Zhang, X. Tang, Y. Yue, L. Guo, ACS Nano 11 (2017) 2835-2845.
DOI URL PMID |
[23] | K. Chen, X. Tang, Y. Yue, H. Zhao, L. Guo, ACS Nano 10 (2016) 4 816-4 827. |
[24] |
K. Hara, A. Nakamura, N. Hiramatsu, A. Matsumoto, Jpn. J. Appl. Phys. 39 (2000) 2913-2915.
DOI URL |
[25] |
Y.-.Z. Wei, G.-.S. Wang, Y. Wu, Y.-.H. Yue, J.-.T. Wu, C. Lu, L. Guo, J. Mater. Chem. A 2 (2014) 5516-5524.
DOI URL |
[26] |
J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Nature 489 (2012) 133-136.
DOI URL |
[27] | S. Lin, X. Liu, J. Liu, H. Yuk, H. Loh, G.A. Parada, C. Settens, J. Song, A. Masic, G.H. Mckinley, X. Zhao, Sci. Adv. 5 (2019) 8528. |
[28] |
S.M. Liang, H.M. Ji, X.W. Li, J. Mater. Sci. Technol. 88 (2021) 189-202.
DOI URL |
[29] | H.M. Ji, S.M. Liang, X.W. Li, D.L. Chen, Mater. Sci. Eng. C 108 (2020) 110364. |
[30] |
S.M. Liang, H.M. Ji, X.W. Li, J. Mater. Sci. Technol. 44 (2020) 1-8.
DOI URL |
[31] | H. Gao, B. Ji, I.L. Jager, E. Arzt, P. Fratzl, Proc. Natl. Acad. Sci 100 (2003) 5597-5600. |
[32] |
E. Zhang, R. Bai, X.P. Morelle, Z. Suo, Soft Matter 14 (2018) 3563-3571.
DOI URL |
[33] | Z. Wang, C. Xiang, X. Yao, P.Le Floch, J. Mendez, Z. Suo, Proc. Natl. Acad. Sci 116 (2019) 5967-5972. |
[34] | C. Chen, Z. Wang, Z. Suo, Extrem. Mech. Lett. 10 (2017) 50-57. |
[35] | C. Li, H. Yang, Z. Suo, J. Tang, J. Mech. Phys. Solids 134 (2020) 103751. |
[36] |
D. Taylor, N. O’Mara, E. Ryan, M. Takaza, C. Simms, J. Mech. Behav. Biomed. Mater. 6 (2012) 139-147.
DOI URL PMID |
[37] | Z. Zhao, X. Kuang, C. Yuan, H.J. Qi, D. Fang, ACS Appl. Mater. Interfaces 10 (2018) 19932-19939. |
[38] | Z. Mao, K. Zhu, L. Pan, G. Liu, T. Tang, Y. He, J. Huang, J. Hu, K.W.Y. Chan, J. Lu, Adv. Mater. Technol. 5 (2020) 1900974. |
[39] |
A.M. Hubbard, W. Cui, Y. Huang, R. Takahashi, M.D. Dickey, J. Genzer, D.R. King, J.P. Gong, Matter 1 (2019) 674-689.
DOI URL |
[40] | P. Zhu, R. Chen, C. Zhou, M. Aizenberg, J. Aizenberg, L. Wang, Adv. Mater. 2008558 (2021) 2008558. |
[41] | S.Y. Zheng, Y. Shen, F. Zhu, J. Yin, J. Qian, J. Fu, Z.L. Wu, Q. Zheng, Adv. Funct. Mater. 28 (2018) 1803366. |
[42] | W. Wang, C. Li, M. Cho, S.H. Ahn, ACS Appl. Mater. Interfaces 10 (2018) 10419-10427. |
[43] | Z. Ji, C. Yan, B. Yu, X. Zhang, M. Cai, X. Jia, X. Wang, F. Zhou, Adv. Mater. Tech- nol. 4 (2019) 1800713. |
[44] |
J. Shintake, S. Rosset, B. Schubert, D. Floreano, H. Shea, Adv. Mater. 28 (2016) 231-238.
DOI URL |
[1] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[2] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[3] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[4] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[5] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[6] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[7] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[8] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[9] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[10] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[11] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[12] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[13] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[14] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[15] | SeungHyeok Chung, Bin Lee, Soo Yeol Lee, Changwoo Do, Ho Jin Ryu. The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 85(0): 62-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||