J. Mater. Sci. Technol. ›› 2022, Vol. 116: 83-93.DOI: 10.1016/j.jmst.2021.11.036
• Research Article • Previous Articles Next Articles
Naifang Zhanga, Qiaodan Hua,*(), Zongye Dinga, Wenquan Lua, Fan Yangb, Jianguo Lia
Received:
2021-09-27
Revised:
2021-11-22
Accepted:
2021-11-24
Published:
2022-01-29
Online:
2022-07-26
Contact:
Qiaodan Hu
About author:
∗ E-mail address: qdhu@sjtu.edu.cn (Q. Hu).Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates[J]. J. Mater. Sci. Technol., 2022, 116: 83-93.
Fig. 2. SEM images of proeutectic FeAl3 at Al/Fe interface under different cooling rates: (a) ~0.1 K/s; (b) ~1.2 K/s; (c) ~8.5 K/s; (d) ~30 K/s. The inset figures in (c) and (d) are the expanded views of the periodic zigzag particle in purple dotted circle and the flange structure in yellow dotted circle respectively.
Fig. 3. EBSD mapping and pole figures of the proeutectic FeAl3 phase at different cooling rates: (a1-b1) ~0.1 K/s; (a2-b2) ~1.2 K/s; (a3-b3) ~8.5 K/s; (a4-b4) ~30 K/s.
Fig. 4. 3D rendered images of proeutectic FeAl3 formed at the Al/Fe interface: (a) ~0.1 K/s; (b) ~1.2 K/s; (c) ~8.5 K/s; (d) ~30 K/s. Different colors represent the non-interconnected FeAl3 individuals.
Fig. 5. (a)-(d) Typical 3D rendered proeutectic FeAl3 phases formed at the Al/Fe interface of the 0.1 K/s cooled sample; (e) A unit cell structure of FeAl3 crystal.
Fig. 6. (a, b) Front view and top view of 3D rendered proeutectic FeAl3 phases formed at the Al/Fe interface of the 1.2 K/s cooled sample; (c, d) typical proeutectic FeAl3 particles.
Fig. 7. (a) 3D rendered proeutectic FeAl3 phases formed at the Al/Fe interface of the 8.5 K/s cooled sample; (b-e) typical 3D rendered proeutectic FeAl3 particles extracted from (a).
Fig. 8. (a, b) Front view and top view of 3D rendered proeutectic FeAl3 phases formed at the Al/Fe interface of the 30 K/s cooled sample; (c-e) typical 3D rendered proeutectic FeAl3 particles.
Fig. 11. (a) Crystallography diagram of the (100) and ($20\bar{1}$)T twinning in FeAl3, (b) and idealized schematic of multiple twinned FeAl3 crystal.
Fig. 12. (a) Schematic showing the morphology of a twinned interface near a re-entrant groove; (b) a typical (001) twinning particle with twin plane groove at the growth end.
[1] |
W.J. Cheng, C.J. Wang, Mater. Charact. 61 (2010) 467-473.
DOI URL |
[2] |
H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, Acta Mater 59 (2011) 1586-1600.
DOI URL |
[3] |
Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, J.G. Li, Mater. Charact. 136 (2018) 157-164.
DOI URL |
[4] | T. Gao, Y.H. Bian, K.Q. Hu, K. Zhao, W.B. Zhang, X.F. Liu, Results. Mater. 3 (2019) 100036. |
[5] | X.G. Chen, Essential Readings in Light Metals (2016) 460-465. |
[6] |
H.S. Seo, W.Y. Yoon, M.H. Kim, E.P. Yoon, K.H. Kim, J. Mater. Sci. 37 (2002) 4481-4486.
DOI URL |
[7] |
J. Chen, R. Lengsdorf, H. Henein, D.M. Herlach, U. Dahlborg, M. Calvo-Dahlborg, J. Alloy. Compd. 556 (2013) 243-251.
DOI URL |
[8] |
C. McL. Adam, L.M. Hogan, Acta Metall 23 (1975) 345-354.
DOI URL |
[9] |
Q. Wang, X.S. Leng, T.H. Yang, J.C. Yan, Trans. Nonferrous Met. Soc. China 24 (2014) 279-284.
DOI URL |
[10] |
S. Kobayashi, T. Yakou, Mat. Sci. Eng. A 338 (2002) 44-53.
DOI URL |
[11] |
Y. Han, C.Y. Ban, S.J. Guo, X.T. Liu, Q.X. Ba, J.Z. Cui, Mater. Lett. 61 (2007) 983-986.
DOI URL |
[12] |
A.J. McLeod, L.M. Hogan, C. McL. Adam, D.C. Jenkinson, J. Cryst. Growth 19 (1973) 301-309.
DOI URL |
[13] |
A. Bjurenstedt, D. Casari, S. Seifeddine, R.H. Mathiesen, A.K. Dahle, Acta Mater 130 (2017) 1-9.
DOI URL |
[14] | B. Kim, S. Lee, S. Lee, H. Yasuda, Mater. Trans. (2012). |
[15] |
Y.L. Zhao, W.W. Zhang, D.F. Song, B. Lin, F.H. Shen, D.H. Zheng, C.X. Xie, Z.Z. Sun, Y.N. Fu, R.X. Li, J. Mater. Sci. Technol. 80 (2021) 84-99.
DOI URL |
[16] |
S.K. Feng, E. Liotti, A. Lui, M.D. Wilson, T. Connolley, R.H. Mathiesen, P.S. Grant, Acta Mater 196 (2020) 759-769.
DOI URL |
[17] |
Z.H. Song, O.V. Magdysyuk, L. Tang, T. Sparks, B. Cai, J. Alloy. Compd. 861 (2021) 158604.
DOI URL |
[18] |
J.M. Yu, N. Wanderka, A. Rack, R. Daudin, E. Boller, H. Markötter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, J. Banhart, Acta Mater 129 (2017) 194-202.
DOI URL |
[19] | M. Yang, S. Xiong, Z. Guo, Magnesium Technology (2016) 35-39. |
[20] |
S.S. Shuai, E.Y. Guo, J. Wang, A.B. Phillion, T. Jing, Z.M. Ren, P.D. Lee, Acta Mater 156 (2018) 287-296.
DOI URL |
[21] |
N. Limodin, L. Salvo, M. Suéry, M. DiMichiel, Acta Mater 55 (2007) 3177-3191.
DOI URL |
[22] |
A. Tireira, G. Requena, S. Sao Jao, A. Borbely, H. Klocker, Acta Mater 112 (2016) 162-170.
DOI URL |
[23] |
Y.L. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, Scr. Mater. 146 (2018) 321-326.
DOI URL |
[24] |
C. Landron, E. Maire, J. Adrien, H. Suhonen, P. Cloetens, O. Bouaziz, Scr. Mater. 66 (2012) 1077-1080.
DOI URL |
[25] |
Y.L. Zhao, D.F. Song, B. Lin, C. Zhang, D.H. Zheng, S. Inguva, T. Li, Z.Z. Sun, Z. Wang, W.W. Zhang, Mater. Charact. 153 (2019) 354-365.
DOI URL |
[26] |
S.S. Shuai, E.Y. Guo, Q.W. Zheng, M.Y. Wang, T. Jing, Y.N. Fu, Mater. Charact. 118 (2016) 304-308.
DOI URL |
[27] | S.S. Shuai, E.Y. Guo, Q.W. Zheng, M.Y. Wang, T. Jing, Mater. Charact. 111 (2016) 170-176. |
[28] | K.A. Jackson, D.R. Uhlmann, J.D. Hunt, J. Cryst. Growth 1 (1967) 1-36. |
[29] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans. Tech. Publications, 1989. |
[30] | Z.Q. Cui, B.X. Liu, Principle of Metallography and Heat Treatment, Harbin Insti- tute of Technology Press, Harbin, 2009. |
[31] |
D. Turnbull, J.C. Fisher, J. Chem. Phys. 17 (1949) 71-73.
DOI URL |
[32] |
P.J. Black, Acta Crystallogr 8 (1955) 43-48.
DOI URL |
[33] |
P.J. Black, Acta Crystallogr 8 (1955) 175-182.
DOI URL |
[34] |
K.K. Fung, X.D. Zou, C.Y. Yang, Phil. Mag. Lett. 55 (1987) 27-32.
DOI URL |
[35] |
L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Cryst. Growth 339 (2012) 61-69.
DOI URL |
[36] | L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Appl. Crys- tallogr. 43 (2010) 1108-1112. |
[37] |
O.A. Atasoy, F. Yilmaz, R. Elliott, J. Cryst. Growth 66 (1984) 137-146.
DOI URL |
[38] |
S. Hegde, K.N. Prabhu, J. Mater. Sci. 43 (2008) 3009-3027.
DOI URL |
[39] |
D.R. Hamilton, R.G. Seidensticker, J. Appl. Phys. 31 (1960) 1165-1168.
DOI URL |
[40] |
A.J. Shahani, P.W. Voorhees, J. Mater. Res. 31 (2016) 2936.
DOI URL |
[41] | K.A. Jackson, Liquid Metals and Solidification, ASM, Cleveland, OH, 1958. |
[42] |
J.W. Xian, S.A. Belyakov, M. Ollivier, K. Nogita, H. Yasuda, C.M. Gourlay, Acta Mater 126 (2017) 540-551.
DOI URL |
[43] | Y.H. Zhou, Z.Q. Hu, W.Q. Jie, in:Solidification Technology, China Machine In- dustry Press, Beijing, 1998, p. 245. |
[44] | K. Saito, K. Sugiyama, K. Hiraga, Mat. Sci. Eng. A 294 (2000) 279-282. |
[1] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[2] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[3] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
[4] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[5] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[6] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[7] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[8] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[9] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[10] | Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 1-13. |
[11] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[12] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[13] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[14] | Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field [J]. J. Mater. Sci. Technol., 2022, 116(0): 58-71. |
[15] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||