J. Mater. Sci. Technol. ›› 2022, Vol. 116: 72-82.DOI: 10.1016/j.jmst.2021.11.038
• Research Article • Previous Articles Next Articles
Qiang Luoa, Donghui Lia, Mingjuan Caia, Siyi Dia, Zhengguo Zhanga, Qiaoshi Zengb, Qianqian Wanga, Baolong Shena,*()
Received:
2021-09-14
Revised:
2021-11-02
Accepted:
2021-11-04
Published:
2022-01-29
Online:
2022-07-26
Contact:
Baolong Shen
About author:
∗ E-mail address: blshen@seu.edu.cn (B. Shen).Qiang Luo, Donghui Li, Mingjuan Cai, Siyi Di, Zhengguo Zhang, Qiaoshi Zeng, Qianqian Wang, Baolong Shen. Excellent magnetic softness-magnetization synergy and suppressed defect activation in soft magnetic amorphous alloys by magnetic field annealing[J]. J. Mater. Sci. Technol., 2022, 116: 72-82.
Fig. 2. The Co content dependence of (a) Bs, (b) μe and (c) Hc for Fe82.65-xCoxSi2B14Cu1.35 (x = 0-20) alloys treated by NA and FA at optimum condition, as well as the AQ state.
Fig. 5. Magnetic domain patterns of Fe66.65Co16Si2B14Cu1.35 ribbon samples at (a) AQ, (b) NA and (c) FA states. (d) Hysteresis loops of Fe66.65Co16Si2B14Cu1.35 ribbon samples at AQ, NA and FA states. Partial enlarged plot is given as the inset.
Fig. 6. (a) DSC curves for Fe66.65Co16Si2B14Cu1.35 ribbons at AQ, NA and FA states. The inset demonstrates a partial enlargement. (b) Synchrotron XRD of Fe66.65Co16Si2B14Cu1.35 ribbon samples treated by NA and FA. The inset shows the enlarged image of the gray area.
Fig. 7. The HRTEM images and the corresponding FFT patterns for Fe66.65Co16Si2B14Cu1.35 ribbons at (a) AQ, (b) NA and (c) FA states. Representative auto-correlation images of typical cells with (d, f) crystal-like and (h) typical most disordered orders, and the corresponding FFT patterns (e, g, i). (j-l) Auto-correlation maps for the selected parts of the HRTEM images of (a-c). The cells showing crystal-like order and the most disordered feature are marked by red and orange rectangles, respectively.
Fig. 9. The bright-field TEM images, SAED patterns, grain size distribution, HAADF STEM images and corresponding EDS mappings of Cu element for samples treated by NA and FA at 375 °C for 5 min.
Fig. 10. Experimental and fitting creep curves of the Fe66.65Co16Si2B14Cu1.35 ribbons at (a) AQ, (b) NA, and (c) FA states at different loading rates. (d) The histogram of the fitting parameters of creep curves for the Fe66.65Co16Si2B14Cu1.35 ribbons at AQ, NA and FA states based on the Maxwell-Voigt model.
Fig. 11. The relaxation spectra of Fe66.65Co16Si2B14Cu1.35 ribbons at (a) AQ, (b) NA, and (c) FA states under different loading rates with a maximum load of 80 mN. (d) The relaxation spectra of Fe66.65Co16Si2B14Cu1.35 ribbons at AQ, NA and FA states under the loading rate of 10 mN/s.
Fig. 12. Schematic diagram of magnetic domain and atomic structures of Fe66.65Co16Si2B14Cu1.35 AAs in the AQ, NA and FA states. The blue balls denote the atoms forming completely disordered microstructure, and the red balls denote the atoms forming crystal-like clusters. Groups of atoms with different background colors refer to different magnetic domains, where the fluctuations of the easy magnetization direction are indicated by the arrows.
[1] |
J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Science 362 (2018) eaao0195.
DOI URL |
[2] |
L. Shi, K. Yao, Mater. Des. 189 (2020) 108511.
DOI URL |
[3] |
D. Azuma, N. Ito, M. Ohta, J. Magn. Magn. Mater. 501 (2020) 166373.
DOI URL |
[4] |
B. Shen, A. Inoue, C. Chang, Appl. Phys. Lett. 85 (2004) 4 911-4 913.
DOI URL |
[5] |
X. Liang, A. He, A. Wang, J. Pang, C. Wang, C. Chang, K. Qiu, X. Wang, C.T. Liu, J. Alloy. Compd. 694 (2017) 1260-1264.
DOI URL |
[6] |
K.F. Yao, L.X. Shi, S.Q. Chen, Y. Shao, N. Chen, J.L. Jia, Acta Phys. Sin. 67 (2018) 016101.
DOI URL |
[7] |
P. Chen, A. Wang, C. Zhao, A. He, G. Wang, C. Chang, X. Wang, C.T. Liu, Sci. China Phys. Mech. Astron. 60 (2017) 106111.
DOI URL |
[8] |
F. Wang, A. Inoue, Y. Han, F.L. Kong, S.L. Zhu, E. Shalaan, F. Al-Marzouki, A. Obaid, J. Alloy. Compd. 711 (2017) 132-142.
DOI URL |
[9] | M. Shi, Z. Liu, T. Zhang, J. Mater. Sci. Technol. 31 (2015) 4 93-4 97. |
[10] |
K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 70 (1991) 6232-6237.
DOI URL |
[11] |
K. Xu, H. Ling, Q. Li, J. Li, K. Yao, S. Guo, Intermetallics 51 (2014) 53-58.
DOI URL |
[12] |
R.K. Roy, A.K. Panda, A. Mitra, J. Magn. Magn. Mater. 418 (2016) 236-241.
DOI URL |
[13] | A. Nabais, J.C. Faugières, J.F. Rialland, R. Bonnefille, Rev. Phys. Appl. 19 (1984) 1-5. |
[14] |
C. Zhao, A. Wang, A. He, S. Yue, C. Chang, X. Wang, R.W. Li, J. Alloy. Compd. 659 (2016) 193-197.
DOI URL |
[15] | I. Škorvánek, J. Marcin, J. Tur ˇcanová, J. Kováˇc, P. Švec, J. Alloy. Compd. 504S (2010) S135-S138. |
[16] | D. Mishra, P. Saravanan, A. Perumal, A. Srinivasan, J. Appl. Phys. 109 (2011) 07A306. |
[17] |
P. Marín, A. Hernando, Appl. Phys. Lett. 94 (2009) 122507.
DOI URL |
[18] | M. Liu, Z. Wang, Y. Xu, IEEE Trans. Magn. 51 (2015) 2004704. |
[19] |
C. Zhao, A. Wang, S. Yue, T. Liu, A. He, C. Chang, X. Wang, C.T. Liu, J. Alloy. Compd. 742 (2018) 220-225.
DOI URL |
[20] |
C. Wang, Z. Wu, X. Feng, Z. Li, Y. Gu, Y. Zhang, X. Tan, H. Xu, Intermetallics 118 (2020) 106689.
DOI URL |
[21] |
J. Xu, Y. Yang, Q. Yan, G. Xiao, T. Luo, C. Fan, Scr. Mater. 179 (2020) 6-11.
DOI URL |
[22] |
M. Ohta, Y. Yoshizawa, Appl. Phys. Lett. 91 (2007) 062517.
DOI URL |
[23] |
M. Ohta, Y. Yoshizawa, J. Phys. D Appl. Phys. 44 (2011) 064004.
DOI URL |
[24] |
A. Williams, V. Moruzzi, A. Malozemoff, K. Terakura, IEEE Trans. Magn. 19 (1983) 1983-1988.
DOI URL |
[25] |
S. Bhattacharya, E.A. Lass, S.J. Poon, G.J. Shiflet, M. Rawlings, M. Daniil, M.A. Willard, J. Appl. Phys. 111 (2012) 063906.
DOI URL |
[26] |
R.C. O’Handley, R. Hasegawa, R. Ray, C.P. Chou, Appl. Phys. Lett. 29 (1976) 330-332.
DOI URL |
[27] |
F. Wang, A. Inoue, Y. Han, S.L. Zhu, F.L. Kong, E. Zanaeva, G.D. Liu, E. Shalaan, F. Al-Marzouki, A. Obaid, J. Alloy. Compd. 723 (2017) 376-384.
DOI URL |
[28] |
H. Li, A. Wang, T. Liu, P. Chen, A. He, Q. Li, J. Luan, C.T. Liu, Mater. Today 42 (2021) 49-56.
DOI URL |
[29] |
A. Wang, C. Zhao, H. Men, A. He, C. Chang, X. Wang, R.W. Li, J. Alloy. Compd. 630 (2015) 209-213.
DOI URL |
[30] |
F.L. Kong, C.T. Chang, A. Inoue, E. Shalaan, F. Al-Marzouki, J. Alloy. Compd. 615 (2014) 163-166.
DOI URL |
[31] |
H. Zheng, L. Zhu, S.S. Jiang, Y.G. Wang, F.G. Chen, J. Alloy. Compd. 834 (2020) 155068.
DOI URL |
[32] | A.D. Setyawan, K. Takenaka, P. Sharma, M. Nishijima, N. Nishiyama, A. Makino, J. Appl. Phys. 117 (2015) 17B715. |
[33] |
Y. Meng, S. Pang, C. Chang, X. Bai, T. Zhang, J. Magn. Magn. Mater. 523 (2021) 167583.
DOI URL |
[34] |
R. Parsons, Z. Li, K. Suzuki, J. Magn. Magn. Mater. 485 (2019) 180-186.
DOI |
[35] |
Z. Li, A. Wang, C. Chang, Y. Wang, B. Dong, S. Zhou, J. Alloy. Compd. 611 (2014) 197-201.
DOI URL |
[36] |
G.T. Xia, Y.G. Wang, J. Dai, Y.D. Dai, J. Alloy. Compd. 690 (2017) 281-286.
DOI URL |
[37] |
R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, J. Alloy. Compd. 723 (2017) 408-417.
DOI URL |
[38] |
M. Xiao, L. Zheng, L. Zhou, H. Yu, G. Wang, D. Zeng, J. Non Cryst. Solids 556 (2021) 120560.
DOI URL |
[39] |
B. Zang, R. Parsons, K. Onodera, H. Kishimoto, A. Kato, A.C.Y. Liu, K. Suzuki, Scr. Mater. 132 (2017) 68-72.
DOI URL |
[40] |
Y. Geng, Y. Wang, Z. Wang, J. Qiang, H. Wang, C. Dong, O. Tegus, Mater. Des. 106 (2016) 69-73.
DOI URL |
[41] |
M. Shi, Z. Liu, T. Zhang, J. Magn. Magn. Mater. 378 (2015) 417-423.
DOI URL |
[42] |
T. Warski, A. Radon, P. Zackiewicz, P. Wlodarczyk, M. Polak, A. Wojcik, W. Maziarz, A. Kolano-Burian, L. Hawelek, Materials 14 (2021) 726.
DOI URL |
[43] |
L. Hou, X. Fan, Q. Wang, W. Yang, B. Shen, J. Mater. Sci. Technol. 35 (2019) 1655-1661.
DOI URL |
[44] |
Y. Li, K. Lv, N. Shen, X. Chen, L. Chen, F. Li, X. Hui, J. Magn. Magn. Mater. 530 (2021) 167915.
DOI URL |
[45] |
J. Degro, P. Vojtanik, J. Filipensky, P. Duhaj, Mater. Sci. Eng. B 14 (1992) 81-86.
DOI URL |
[46] |
A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michiel, ˚A. Kvick, Acta Mater. 53 (2005) 1611-1619.
DOI URL |
[47] |
Q. Wang, C.T. Liu, Y. Yang, J.B. Liu, Y.D. Dong, J. Lu, Sci. Rep. 4 (2014) 4648.
DOI PMID |
[48] |
F. Zhu, A. Hirata, P. Liu, S. Song, Y. Tian, J. Han, T. Fujita, M. Chen, Phys. Rev. Lett. 119 (2017) 215501.
DOI URL |
[49] |
K. Nomoto, A.V. Ceguerra, C. Gammer, B. Li, H. Bilal, A. Hohenwarter, B. Glu- dovatz, J. Eckert, S.P. Ringer, J.J. Kruzic, Mater. Today 44 (2021) 48-57.
DOI URL |
[50] |
S. Nakamichi, S. Tsurekawa, Y. Morizono, T. Watanabe, M. Nishida, A. Chiba, J. Mater. Sci. 40 (2005) 3191-3198.
DOI URL |
[51] |
Y. Li, Z. Wang, W. Zhang, AIP Adv. 8 (2018) 056115.
DOI URL |
[52] |
S.P. Mondal, K.H. Maria, S.S. Sikder, S. Choudhury, D.K. Saha, M.A. Hakim, J. Mater. Sci. Technol. 28 (2012) 21-26.
DOI URL |
[53] |
G. Herzer, Acta Mater. 61 (2013) 718-734.
DOI URL |
[54] |
C.C. Yuan, R. Liu, C.M. Pang, X.F. Zuo, B.F. Li, S.C. Song, J.Y. Hu, W.W. Zhu, B.L. Shen, J. Alloy. Compd. 853 (2021) 157233.
DOI URL |
[55] |
C. Yuan, Z. Lv, C. Pang, X. Li, R. Liu, C. Yang, J. Ma, H. Ke, W. Wang, B. Shen, Sci. China Mater. 64 (2020) 448-459.
DOI URL |
[56] |
A.I. Taub, F. Spaepen, J. Mater. Sci. 16 (1981) 3087-3092.
DOI URL |
[57] |
H.B. Ke, P. Zhang, B.A. Sun, P.G. Zhang, T.W. Liu, P.H. Chen, M. Wu, H.G. Huang, J. Alloy. Compd. 788 (2019) 391-396.
DOI |
[58] |
Q.P. Cao, L.J. Sun, C. Wang, Y. Fu, S.Y. Liu, S.X. Qu, X.D. Wang, D.X. Zhang, J.Z. Jiang, Thin Solid Films 681 (2019) 23-31.
DOI |
[59] |
P. Zhang, J.J. Maldonis, Z. Liu, J. Schroers, P.M. Voyles, Nat. Commun. 9 (2018) 1129.
DOI PMID |
[60] |
J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9 (2010) 619-623.
DOI PMID |
[61] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[62] |
C.D. Graham, T. Egami, Ann. Rev. Mater. Sci. 8 (1978) 423-457.
DOI URL |
[63] |
Z.B. Li, B.G. Shen, E. Niu, J.R. Sun, Appl. Phys. Lett. 103 (2013) 062405.
DOI URL |
[64] | S Taniguchi,M Yamamoto, Sci. Rep. Res. Inst. Tohoku Univ. A 6 (1954) 330-332. |
[1] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[2] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[3] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[4] | Cong Liu, Wenyi Peng, C.S. Jiang, Hongmin Guo, Jun Tao, Xiaohua Deng, Zhaoxia Chen. Composition and phase structure dependence of mechanical and magnetic properties for AlCoCuFeNix high entropy alloys [J]. J. Mater. Sci. Technol., 2019, 35(6): 1175-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||