J. Mater. Sci. Technol. ›› 2022, Vol. 116: 58-71.DOI: 10.1016/j.jmst.2021.11.037
• Research Article • Previous Articles Next Articles
Yixuan Hea,b,c,*(), Fan Bua,b, Yuhao Wua,b, Jianbao Zhanga,b, Dawei Luoa,b, Zhangchi Biana, Qing Zhoua,b, Tie Liud, Qiang Wangd, Jun Wanga,*(
), Haifeng Wanga,b, Jinshan Lia,*(
), Eric Beaugnone
Received:
2021-10-13
Revised:
2021-11-16
Accepted:
2021-11-16
Published:
2022-01-29
Online:
2022-07-26
Contact:
Yixuan He,Jun Wang,Jinshan Li
About author:
ljsh@nwpu.edu.cn (J. Li).Yixuan He, Fan Bu, Yuhao Wu, Jianbao Zhang, Dawei Luo, Zhangchi Bian, Qing Zhou, Tie Liu, Qiang Wang, Jun Wang, Haifeng Wang, Jinshan Li, Eric Beaugnon. Liquid state dependent solidification of a Co-B eutectic alloy under a high magnetic field[J]. J. Mater. Sci. Technol., 2022, 116: 58-71.
Fig. 1. Initial microstructure of the as-solidified Co-81.5at.%B eutectic alloy. (a) SEM-BSE image. (b) Higher magnification SEM-ETD image. (c) EBSD phase map and (d) the corresponding Y axis inverse pole figure (IPF) map (Y axis is parallel to the direction of gravity).
Fig. 2. Melt processing history and the corresponding solidification behavior of the Co-81.5at.%B eutectic alloy treated with a high overheating temperature of 1800 K. (a) The temperature and magnetization as a function of time. (b) The enlarged area of the dashed square in Fig. 2(a), showing the solidification process. (c) The corresponding temperature dependence of magnetization curve (M-T curve). (d) The corresponding inverse magnetization as a function of temperature curve (1/M-T curve). The field intensity and gradient at the sample position are 1.56 T and 23.235 T m-1, respectively. The heating and cooling rates are 10 K min-1.
Fig. 3. Melt processing history and the corresponding solidification behavior of the Co-81.5at.%B eutectic alloy treated with a low overheating temperature of 1470 K. (a) The temperature and magnetization as a function of time. (b) The enlarged area of the dashed square in Fig. 3(a), showing the solidification process. (c) The corresponding M-T curve. The inset figure is the enlarged area (dashed square) showing the anomalous magnetism. (d) The corresponding 1/M-T curve. The 1/M-T curve shown in Fig. 2(d) are taken as the reference. The field intensity and gradient at the sample position are 1.56 T and 23.235 T m-1, respectively. The heating and cooling rates are 10 K min-1.
Fig. 4. The corresponding macrographs and the surface morphologies after solidification. (a) and (b) correspond to the processing histories shown in Fig. 2(a) and Fig. 3(a), respectively. (a1) and (b1) are the SEM surface images. (a2) and (b2) are 3-dimensional images showing the surface roughness.
Fig. 5. Longitudinal (parallel to the direction of magnetic field) microstructure of the sample shown in Fig. 4(a). (a) Low-magnification overview. (b) The corresponding XRD pattern. (c) Medium magnification image. (d) The corresponding close-up views of the square region in Fig. 4(c).
Fig. 6. EBSD analysis of the microstructure shown in Fig. 5. (a) SEM-ETD image. (b) Phase map and (c) the corresponding IPF map. The small red rectangle in Fig. 6(b) indicates the location for preparing in-depth TEM lamella by FIB.
Fig. 7. TEM analysis of a FIB lift-out lamella prepared from the location in Fig. 6(b). (a) STEM bright-field image. (b, c) SAD patterns taken from the regions indicated by circles in Fig. 7(a). The indices in the bottom right corner indicate the corresponding zone axes.
Fig. 8. Longitudinal (parallel to the direction of magnetic field) microstructure of the sample shown in Fig. 4(b). (a) Low-magnification overview. (b) The corresponding XRD pattern. (c, d) Medium magnification images of the square regions in Fig. 8(a). (c1, d1) The corresponding close-up views of the squares in Fig. 8(c, d), respectively.
Fig. 9. EBSD analysis of the microstructure shown in Fig. 8. (a-a2) and (b-b2) correspond to the locations shown in Fig. 8(b) and Fig. 8(c), respectively. (a, b) SEM-ETD image. (a1, b1) Phase map and (a2, b2) the corresponding IPF map.
Fig. 10. The mechanical characterization of constituent phases of the two samples. (a) Representative load-displacement curves for a maximum load of 10 mN. (b) The nanohardness H and plastic energy ratio (PE/TE) for different phases as determined by nano-indentations. It can be concluded that a higher H often leads to a lower PE/TE as ‘plastic energy’ actually reflects the work done during indenting that is not recovered during retraction.
Fig. 11. The macroscopic tribological behavior of the two samples. (a) The friction coefficient as a function of time. (b) The wear rate and macroscopic hardness of the two samples. The WLI images (c, d) and the corresponding two-dimensional line scans (e) of the worn surface of two samples, respectively.
Fig. 12. SEM micrographs of the worn surfaces of the two kinds of samples: (a) sample I; (b) sample II. Locally magnified images of the worn surfaces are shown in (c) and (d), respectively. SEM observation at the tribolayer shows the local delamination and peeled-off of debris on the surface of wear scar, indicating the brittle fracture of sample II. On the contrary, multiple parallel ploughs can be observed rather than cracking and delamination behavior.
Fig. 13. SEM images and corresponding EDS mapping of the elemental composition on the worn surfaces for (a) sample I and (b) sample II. It is obvious that a compacted and stable oxide-layer is formed on sample I but only sparse oxide particles founded on the surface of sample II.
Empty Cell | Fcc-Co | Refs. |
---|---|---|
Mole volume, Vm (cm3 mol-1) | 6.63 | [ |
Heat of fusion, ∆Hf (KJ mol-1) | 16.06 | [ |
Table 1. Physical parameters used for calculating the energy barrier.
Empty Cell | Fcc-Co | Refs. |
---|---|---|
Mole volume, Vm (cm3 mol-1) | 6.63 | [ |
Heat of fusion, ∆Hf (KJ mol-1) | 16.06 | [ |
Fig. 14. The energy barrier ∆G* dependent on θ (θ=T/Tm-1) for nucleation of sample I with experiencing LLST and sample II without experiencing LLST (marked by the red pentagram). The case with magnetic field-induced LLST in this work and temperature-induced LLST in [33] are described by blue and green lines with symbols, respectively. θ0 is the critical transition point of LLST for Co-18.5at.%B alloy, which could be manipulated by the application of magnetic field.
[1] | X. Sun, J. He, B. Chen, L. Zhang, H. Jiang, J. Zhao, H. Hao, J. Mater. Sci.Technol. 44 (2020) 201-208. |
[2] |
P. Jia, X. Li, J. Zhang, K. Zhang, X. Teng, X. Hu, C. Yang, D. Zhao, J. Mol. Liq. 263 (2018) 218-227.
DOI URL |
[3] |
P.F. Zou, C.H. Zheng, L. Hu, H.P. Wang, J. Mater. Sci. Technol. 77 (2021) 82-89.
DOI |
[4] |
Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka, A. Chiba, J. Mater. Sci. Technol. 50 (2020) 162-170.
DOI URL |
[5] |
H. Wang, H. Su, J. Zhang, Y. Li, L. Liu, H. Fu, J. Alloy. Compd. 688 (2016) 430-437.
DOI URL |
[6] |
H. Li, Y. Huang, J. Sun, Y. Lu, J. Mater. Sci. Technol. 77 (2021) 187-195.
DOI URL |
[7] |
L. Xiong, X. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q. Cao, H. Xie, T. Xiao, D. Zhang, Acta Mater 128 (2017) 304-312.
DOI URL |
[8] |
N. Ren, L. Hu, L. Wang, P. Guan, Scr. Mater. 181 (2020) 43-47.
DOI URL |
[9] | M. Inui, Y. Kajihara, S. Hosokawa, K. Matsuda, Y. Tsuchiya, S. Tsutsui, A.Q.R. Baron, J. Non-Cryst. Solids X 1 (2019) 10 0 0 06. |
[10] |
W. Xu, M.T. Sandor, Y. Yu, H.-. B. Ke, H.-. P. Zhang, M.-. Z. Li, W.-. H. Wang, L. Liu, Y. Wu, Nat. Commun. 6 (2015) 7696.
DOI URL |
[11] |
Y. Yu, Z. Wu, O. Cojocaru-Mirédin, B. Zhu, X.-. Y. Wang, N. Gao, Z.-. Y. Huang, F.-. Q. Zu, Sci. Rep. 7 (2017) 2463.
DOI URL |
[12] |
Y. Mo, Z. Tian, L. Lang, R. Liu, L. Zhou, Z. Hou, P. Peng, T. Zhang, J. Non-Cryst. Solids 513 (2019) 111-119.
DOI URL |
[13] |
Y. He, J. Li, L. Li, J. Wang, E. Yildiz, E. Beaugnon, J. Non-Cryst. Solids 522 (2019) 119583.
DOI URL |
[14] |
H. Tanaka, Phys. Rev. E 62 (20 0 0) 6968-6976.
DOI URL |
[15] |
X. Li, F. Zu, W. Gao, X. Cui, L. Wang, G. Ding, Appl. Surf. Sci. 258 (2012) 5677-5682.
DOI URL |
[16] |
K. Kelton, A. Greer, D. Herlach, D. Holland-Moritz, MRS Bulletin 29 (2004) 940-944.
DOI URL |
[17] |
X. Li, F. Zhang, F. Zu, X. Lv, Z. Zhao, D. Yang, J. Alloy. Compd. 505 (2010) 472-475.
DOI URL |
[18] |
Y. He, J. Li, J. Wang, E. Yildiz, S. Pairis, E. Beaugnon, Mater. Lett. 234 (2019) 351-353.
DOI URL |
[19] |
J. Wang, Y. He, J. Li, R. Hu, H. Kou, E. Beaugnon, Rev. Sci. Instrum. 86 (2015) 025102.
DOI URL |
[20] |
H. Okamoto, J. Phase Equilib. 24 (2003) 376.
DOI URL |
[21] |
H. Ahmadian Baghbaderani, A. Masood, Z. Pavlovic, N. Teichert, C. Ó. Mathúna, P. McCloskey, P. Stamenov, J. Magn. Magn. Mater. 503 (2020) 166630.
DOI URL |
[22] |
T. Shinohara, H. Watanabe, J. Phys. Soc. Jpn. 20 (1965) 2020-2027.
DOI URL |
[23] |
Y. He, J. Li, L. Li, J. Wang, E. Yildiz, E. Beaugnon, J. Alloy. Compd. 815 (2020) 152446.
DOI URL |
[24] |
Y. He, Y. Wu, F. Bu, C. Zou, Z. Bian, Q. Huang, T. Liu, Q. Wang, J. Wang, J. Li, E. Beaugnon, J. Mater. Sci. Technol. 93 (2021) 79-88.
DOI URL |
[25] |
X.X. Wei, W. Xu, J.L. Kang, M. Ferry, J.F. Li, J. Mater. Sci. 51 (2016) 6436-6443.
DOI URL |
[26] |
X.X. Wei, X. Lin, W. Xu, Q.S. Huang, M. Ferry, J.F. Li, Y.H. Zhou, Acta Mater 95 (2015) 44-56.
DOI URL |
[27] |
X.X. Wei, W. Xu, J.L. Kang, M. Ferry, J.F. Li, J. Mater. Sci. Technol. 33 (2017) 352-358.
DOI |
[28] |
L. Liu, X.X. Wei, Q.S. Huang, J.F. Li, X.H. Cheng, Y.H. Zhou, J. Cryst. Growth 358 (2012) 20-28.
DOI URL |
[29] |
M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Phys. Rev. Lett. 73 (1994) 1380-1383.
PMID |
[30] |
J. Wang, J. Li, R. Hu, H. Kou, E. Beaugnon, Mater. Lett. 139 (2015) 288-291.
DOI URL |
[31] |
D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, J. Shi, H. Wang, Int. J. Plast. 142 (2021) 102997.
DOI URL |
[32] |
D.M. Herlach, Mater. Sci. Eng. R 12 (1994) 177-272.
DOI URL |
[33] |
Y. Liu, F. Zhang, Z. Huang, Q. Zhou, Y. Ren, Y. Du, H. Wang, Tribol. Int. 163 (2021) 107160.
DOI URL |
[34] | Q. Zhou, W. Han, D. Luo, Y. Du, J. Xie, X.-. Z. Wang, Q. Zou, X. Zhao, H. Wang, B.D. Beake, Wear 474-475 (2021) 203880. |
[35] |
Y. He, J. Li, J. Wang, H. Kou, E. Beaugnon, Appl. Phys. A 123 (2017) 391.
DOI URL |
[36] |
R.F. Tournier, Chem. Phys. 500 (2018) 45-53.
DOI URL |
[37] |
R.F. Tournier, Phys. B 392 (2007) 79-91.
DOI URL |
[38] | D. Turnbull, J. Appl. Phys. 21 (1950) 1022-1028. |
[39] |
F. Spaepen, R.B. Meyer, Scr. Metall. 10 (1976) 257-263.
DOI URL |
[40] |
R.F. Tournier, Sci. Technol. Adv. Mater. 10 (2009) 014607.
DOI URL |
[41] |
D. Holland-Moritz, T. Schenk, V. Simonet, R. Bellissent, Philos. Mag. 86 (2006) 255-262.
DOI URL |
[42] |
Y. He, J. Li, J. Wang, E. Beaugnon, J. Cryst. Growth 499 (2018) 98-105.
DOI URL |
[43] |
J. Wang, Y. He, J. Li, C. Li, H. Kou, P. Zhang, E. Beaugnon, Mater. Chem. Phys. 225 (2019) 133-136.
DOI |
[44] |
J. Wang, J. Li, R. Hu, H. Kou, E. Beaugnon, Appl. Phys. Lett. 105 (2014) 144101.
DOI URL |
[45] |
A. Ghasemi, J. Alloys Compd. 645 (2015) 467-477.
DOI URL |
[1] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[2] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[3] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[4] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[5] | Bo Yang, Ivan Soldatov, Fenghua Chen, Yudong Zhang, Zongbin Li, Haile Yan, Rudolf Schäfer, Dunhui Wang, Claude Esling, Xiang Zhao, Liang Zuo. Observation of magnetic domain evolution in constrained epitaxial Ni-Mn-Ga thin films on MgO(0 0 1) substrate [J]. J. Mater. Sci. Technol., 2022, 102(0): 56-65. |
[6] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[7] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[8] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[9] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[10] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[11] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[12] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[13] | Yixuan He, Yuhao Wu, Fan Bu, Chengxiong Zou, Zhangchi Bian, Qiliang Huang, Tie Liu, Qiang Wang, Jun Wang, Jinshan Li, Eric Beaugnon. Effects of an ultra-high magnetic field up to 25 T on the phase transformations of undercooled Co-B eutectic alloy [J]. J. Mater. Sci. Technol., 2021, 93(0): 79-88. |
[14] | Mehran Golizadeh, Francisca Mendez Martin, Stefan Wurster, Johann P. Mogeritsch, Abdellah Kharicha, Szilard Kolozsvári, Christian Mitterer, Robert Franz. Rapid solidification and metastable phase formation during surface modifications of composite Al-Cr cathodes exposed to cathodic arc plasma [J]. J. Mater. Sci. Technol., 2021, 94(0): 147-163. |
[15] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||