J. Mater. Sci. Technol. ›› 2022, Vol. 116: 50-57.DOI: 10.1016/j.jmst.2021.11.039
• Research Article • Previous Articles Next Articles
Yingli Maa, Xiaoguang Xua,*(), Xiaoshuang Zhangb, Mayifei Ronga, Liying Lub, Yan Lia, Wenhao Daib, Hongwu Dub, Yong Jianga,*(
)
Received:
2021-10-14
Revised:
2021-11-17
Accepted:
2021-11-24
Published:
2022-01-29
Online:
2022-07-26
Contact:
Xiaoguang Xu,Yong Jiang
About author:
yjiang@ustb.edu.cn (Y. Jiang).Yingli Ma, Xiaoguang Xu, Xiaoshuang Zhang, Mayifei Rong, Liying Lu, Yan Li, Wenhao Dai, Hongwu Du, Yong Jiang. Highly stable aqueous phase black phosphorus quantum dots with enhanced fluorescence property[J]. J. Mater. Sci. Technol., 2022, 116: 50-57.
Fig. 1. (a) TEM image of PEG@BPQDs. (b) HRTEM image of PEG@BPQDs. (c) AFM topographic image of PEG@BPQD. (d) Height profiles along the directions shown in the AFM image.
Fig. 3. (a) UV-vis absorption, PL excitation, and emission spectra of PEG@BPQDs. The inset images show photographs of PEG@BPQDs in water under visible (left) and UV (right) light. (b) PL spectra of PEG@BPQDs under different excitation wavelengths. (c) PL spectra of BPQDs and PEG@BPQDs under the excitation of 320 nm. (d) Emission wavelength of L-PEG@BPQDs, PEG@BPQDs, and H-PEG@BPQDs under the excitation of 350 nm, 370 nm, and 400 nm. (e) PL intensity of L-PEG@BPQDs, PEG@BPQDs, and H-PEG@BPQDs under the excitation of 320 nm, 350 nm, 370 nm, and 400 nm. (f) PL spectra of PEG@BPQDs in ethanol or water under different excitation wavelengths.
Fig. 5. Stability of PEG@BPQDs. (a) The effect of storage time in the air on the PL intensity of PEG@BPQDs. (b) The effect of NaCl concentration on the PL intensity of PEG@BPQDs. (c) The effect of pH value on the PL intensity of PEG@BPQDs.
Fig. 6. (a) The effect of different ions on the PL intensity of PEG@BPQDs. The concentration of each kind of ion is set to 500 μM. (b) Fluorescence responses of PEG@BPQDs toward different concentrations of Fe3+ (from top to bottom: 0, 50, 70, 100, 120, 150, 170, 200, 250, 300, 350, and 400 μM). The inset shows the fluorescence intensities of PEG@BPQDs as a function of Fe3+ concentration, where F and F0 represent the fluorescence intensities in the presence and absence of ions, respectively.
Fig. 7. (a) The viability of the A549 cells after incubation with PEG@BPQDs for 24 h. (b) and (c) are confocal fluorescence images of A549 cells labeled with PEG@BPQDs in bright-field and excited by 405 nm. (d) Merged image of A549 cells.
[1] |
H. Wang, X.Z. Yang, W. Shao, S.C. Chen, J.F. Xie, X.D. Zhang, J. Wang, Y. Xie, J. Am. Chem. Soc. 137 (2015) 11376-11382.
DOI PMID |
[2] |
X. Mu, J.Y. Wang, X.T. Bai, F.J. Xu, H.X. Liu, J. Yang, Y.Q. Jing, L.F. Liu, X.H. Xue, H.T. Dai, Q. Liu, Y.M. Sun, C.L. Liu, X.D. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 20399-20409.
DOI URL |
[3] |
R. Zhang, X.Y. Zhou, D. Zhang, W.K. Lou, F. Zhai, K. Chang, 2D Mater. 2 (2015) 045012.
DOI URL |
[4] |
X. Zhang, H.M. Xie, Z.D. Liu, C.L. Tan, Z.M. Luo, H. Li, J.D. Lin, L.Q. Sun, W. Chen, Z.C. Xu, L.H. Xie, W. Huang, H. Zhang, Angew. Chem. Int. Ed. 54 (2015) 3653.
DOI PMID |
[5] |
Y.M. Xua, X.Q. Zhang, Z.H. Chen, K. Kempa, X. Wang, L.L. Shui, J. Mater. Sci. Technol. 68 (2021) 1-7.
DOI URL |
[6] |
Z.Y. Xu, L. Hu, J. Yuan, Y.Y. Zhang, Y.J. Guo, Z.Y. Jin, F.C. Long, Y.J. Long, H.W. Liang, S.C. Ruan, Y.J. Zeng, Adv. Mater. Interfaces 7 (2020) 1902075.
DOI URL |
[7] |
Y.D. Cao, Y.H. Sun, S.F. Shi, R.M. Wang, Rare Met. 40 (2021) 3357-3374.
DOI URL |
[8] |
S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A.K. Roelofs, Nano Lett. 14 (2014) 5733-5739.
DOI URL |
[9] |
Z.B. Sun, H.H. Xie, S.Y. Tang, X.F. Yu, Z.N. Guo, J.D. Shao, H. Zhang, H. Huang, H.Y. Wang, P.K. Chu, Angew. Chem. Int. Ed. 54 (2015) 11526.
DOI URL |
[10] |
W.S. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng, J.P. Sheng, Z.J. Liu, Y.J. Han, L.Q. Wang, J. Li, L. Deng, Y.N. Liu, S.J. Guo, Adv. Mater. 29 (2017) 1603864.
DOI URL |
[11] |
W. Gu, Y.H. Yan, X.Y. Pei, C.L. Zhang, C.P. Ding, Y.Z. Xian, Sen. Actuators B Chem. 250 (2017) 601-607.
DOI URL |
[12] |
D.W. Zhang, Y. Xu, Q.L. Liu, Z.G. Xia, Inorg. Chem. 57 (2018) 4613-4619.
DOI URL |
[13] |
Z.Y. Wang, Z.Y. Li, Z.L. Sun, S.R. Wang, Z. Ali, S.H. Zhu, S. Liu, Q.S. Ren, F.G. Sheng, B.D. Wang, Y.L. Hou, Sci. Adv. 6 (2020) eabc8733.
DOI URL |
[14] |
N.Z. Zhang, D.W. Zhang, J. Zhao, Z.G. Xia, Dalton Trans. 48 (2019) 6794-6799.
DOI URL |
[15] | S.R. Wang, Z.L. Sun, Y.L. Hou, Adv. Healthc. Mater. 5 (2020) 20 0 0845. |
[16] |
L.Y. Long, X.H. Niu, K. Yan, G. Zhou, J.L. Wang, X.L. Wu, P.K. Chu, Small 14 (2018) 1803132.
DOI URL |
[17] |
M. Lee, Y.H. Park, E.B. Kang, A. Chae, Y. Choi, S. Jo, Y.J. Kim, S.J. Park, B. Min, T.K. An, J. Lee, S.I. In, S.Y. Kim, S.Y. Park, I. In, ACS Omega 2 (2017) 7096-7105.
DOI URL |
[18] |
P.E.M. Amaral, D.C. Hall, R. Pai, J.E. Krol, V. Kalra, G.D. Ehrlich, H.F. Ji, ACS Appl. Nano Mater. 3 (2020) 752-759.
DOI URL |
[19] |
H.U. Lee, S.Y. Park, S.C. Lee, S. Choi, S. Seo, H. Kim, J. Won, K. Choi, K.S. Kang, H.G. Park, H.S. Kim, H.R. An, K.H. Jeong, YC. Lee, J. Lee, Small 12 (2016) 214-219.
DOI URL |
[20] |
L.F. Gao, J.Y. Xu, Z.Y. Zhu, C.X. Hu, L. Zhang, Q. Wang, H.L. Zhang, Nanoscale 8 (2016) 15132-15136.
DOI URL |
[21] |
W. Gu, X.Y. Pei, Y.X. Cheng, C.L. Zhang, J.D. Zhang, Y.H. Yan, C.P. Ding, Y.Z. Xian, ACS Sens. 2 (2017) 576-582.
DOI URL |
[22] |
Q.L. Yue, Y.Y. Hu, L.X. Tao, B.Q. Zhang, C. Liu, Y.P. Wang, C.Y. Chen, J.S. Zhao, C.Z. Li, Microchim. Acta 186 (2019) 640.
DOI URL |
[23] |
Y.H. Xu, Z.T. Wang, Z.N. Guo, H. Huang, Q.L. Xiao, H. Zhang, X.F. Yu, Adv. Opt. Mater. 4 (2016) 1223-1229.
DOI URL |
[24] |
W.Y. Liu, Y.B. Zhu, X. Xu, S.S. Wang, X.X. Zhang, J. Mater. Sci. Mater. Electron. 31 (2020) 9543-9549.
DOI URL |
[25] |
Y.T. Zhao, H.Y. Wang, X.F. Yu, Chin. Sci. Bull. 62 (2017) 2252-2261.
DOI URL |
[26] |
R.J. Gui, H. Jin, Z.H. Wang, J.H. Li, Chem. Soc. Rev. 47 (2018) 6795-6823.
DOI URL |
[27] |
X.W. Jiang, H. Jin, R.J. Gui, Dalton Trans. 49 (2020) 11911.
DOI URL |
[28] |
H.J. Liu, Y.Y. Su, D.Y. Deng, H.J. Song, Y. Lv, Anal. Chem. 91 (2019) 9174-9180.
DOI URL |
[29] |
H.J. Liu, Y.Y. Su, T. Sun, D.Y. Deng, Y. Lv, Chem. Commun. 56 (2020) 1891.
DOI URL |
[30] |
M.Q. Wang, Y. Liang, Y.J. Liu, G.H. Ren, Z.C. Zhang, S.S. Wu, J. Shen, Analyst 143 (2018) 5822.
DOI URL |
[31] | K. Kihara, Z. Kristallogr. 146 (1977) 185-203. |
[32] | L.S. Dake, D.R. Baer, D.M. Friedrich, J. Vac, Sci. Technol. A 7 (1989) 1634. |
[33] | J. Grimblot, J.P. Bonnelle, A. Mortreux, F. Petit, Inorg. Chim. Acta 34 (1979) 29-c36. |
[34] | W. Kwon, G. Lee, S. Do, T. Joo, S.W. Rhee, Small 3 (2014) 506-513. |
[35] |
K. Jiang, S. Sun, L. Zhang, Y. Lu, A.G. Wu, C.Z. Cai, H.W. Lin, Angew. Chem. Int. Edit. 54 (2015) 5360-5363.
DOI URL |
[36] |
W.J. Niu, Y. Li, R.H. Zhu, D. Shan, Y.R. Fan, X.J. Zhang, Sen. Actuators B Chem. 218 (2015) 229-236.
DOI URL |
[37] |
X.H. Niu, Y.H. Li, H.B. Shu, J.L. Wang, J. Phys. Chem. Lett. 7 (2016) 370-375.
DOI URL |
[38] |
Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, J. Am. Chem. Soc. 128 (2006) 7756-7757.
PMID |
[39] | R. Chen, Journal of Luminescence 102- 103 (2003) 510-518. |
[40] |
L. Wang, S.J. Zhu, H.Y. Wang, S.N. Qu, Y.L. Zhang, J.H. Zhang, Q.D. Chen, H.L. Xu, W. Han, B. Yang, H.B. Sun, ACS Nano 8 (2014) 2541-2547.
DOI PMID |
[41] |
X.F. Yang, L.P. Wang, H.M. Xu, M.L. Zhao, Anal. Chim. Acta 631 (2009) 91-95.
DOI URL |
[42] |
A. Iqbal, K. Iqbal, L.G. Xu, B. Li, D.Y. Gong, X.Y. Liu, Y.L. Guo, W.S. Liu, W.W. Qin, H.C. Guo, Sen. Actuators B Chem. 255 (2018) 1130-1138.
DOI URL |
[43] |
S. Engelberg, J. Modrejewski, J.G. Walter, Y.D. Livney, Y.G. Assaraf, Oncotarget 9 (2018) 20993-21006.
DOI PMID |
[1] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[2] | Ju Tang, Jin Zhang, Weizuo Zhang, Yiming Xiao, Yanli Shi, Fanquan Kong, Wen Xu. Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (Ⅲ) ions [J]. J. Mater. Sci. Technol., 2021, 83(0): 58-65. |
[3] | Lin Zhao, Zhao Wang, Yan Li, Sen Wang, Lifeng Wang, Zhaojun Qi, Qiang Ge, Xiaoguang Liu, JinZhong Zhang. Designed synthesis of chlorine and nitrogen co-doped Ti3C2 MXene quantum dots and their outstanding hydroxyl radical scavenging properties [J]. J. Mater. Sci. Technol., 2021, 78(0): 30-37. |
[4] | Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules [J]. J. Mater. Sci. Technol., 2021, 76(0): 60-75. |
[5] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[6] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[7] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[8] | Bo Yu, Fei Ma, Dongjiang Chen, Katam Srinivas, Xiaojuan Zhang, Xinqiang Wang, Bin Wang, Wanli Zhang, Zegao Wang, Weidong He, Yuanfu Chen. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries [J]. J. Mater. Sci. Technol., 2021, 90(0): 37-44. |
[9] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[10] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[11] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[12] | Ling Jin, Li Zhang, Lei Yang, Xingrong Wu, Cheng Zhang, Kang Wei, Lifang He, Xinya Han, Hongbin Qiao, Abdullah M. Asiri, Khalid A. Alamry, Kui Zhang. Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes [J]. J. Mater. Sci. Technol., 2020, 50(0): 184-191. |
[13] | Youliang Cheng, Mengsha Bai, Jian Su, Changqing Fang, Hang Li, Jing Chen, Jieming Jiao. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes [J]. J. Mater. Sci. Technol., 2019, 35(8): 1515-1522. |
[14] | Yihe Jia, Haicheng Wang, Long Xiang, Xiaoguang Liu, Wei Wei, Ning Ma, Dongbai Sun. Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity [J]. J. Mater. Sci. Technol., 2018, 34(6): 942-948. |
[15] | Zhu Xiangxiang, Liu Zeke, Shi Guozheng, Gu Jinan, Wang Weiwei, Ma Wanli. Photovoltaic devices employing ternary PbSxTe1-x nanocrystals [J]. J. Mater. Sci. Technol., 2017, 33(5): 418-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||