J. Mater. Sci. Technol. ›› 2022, Vol. 116: 94-102.DOI: 10.1016/j.jmst.2021.10.050
• Research Article • Previous Articles Next Articles
R.W. Yanga, Y.P. Lianga, J. Xua,b,c,d,*(), X.Y. Menga, J.T. Zhub, S.Y. Caoa, M.Y. Weia, R.X. Zhanga, J.L. Yangc, F. Gaoa,b,*(
)
Received:
2021-09-07
Revised:
2021-11-22
Accepted:
2021-11-26
Published:
2022-07-25
Online:
2022-07-26
Contact:
J. Xu,F. Gao
About author:
gaofeng@nwpu.edu.cn (F. Gao).R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance[J]. J. Mater. Sci. Technol., 2022, 116: 94-102.
Fig. 2. (a) Zeta potential of slurry; (b) Contact angles of slurries with different TLS contents; (c) Viscosities of slurries with different solid loadings (20-50 wt%).
Fig. 3. (a) HAADF-STEM and selected area electron diffraction (SAED) pattern of (5RE0.2)3NbO7; (b) Unit cell and of (5RE0.2)3NbO7; (c) The crystal plane belongs to [001] of (5RE0.2)3NbO7; (d) iDPC image of (5RE0.2)3NbO7; (e) Selected region for contrast information analysis; (f) 3D colormap surface with projection of contrast; (g) Atomic displacement.
Fig. 4. SEM images of (5RE0.2)3NbO7 ceramic foams with different solid loadings sintered at 1500 °C: (a) 20 wt%, (b) 30 wt%, (c) 40 wt%, (d) 50 wt%; (e), (f) SEM image of wall between pores; (g) EDS-mapping of (5RE0.2)3NbO7 ceramic foam.
Fig. 5. SEM images of (5RE0.2)3NbO7 ceramic foams sintered at different temperatures sintered from 30 wt% slurry: (a), (d) 1500 °C; (b), (e) 1550 °C; (c), (f) 1600 °C.
Fig. 6. Size distribution of pores with different solid loadings: (a) 20 wt%, (b) 30 wt%, (c) 40 wt%, (d) 50 wt%; (e) Average pore size; (f) Distribution of secondary pores.
Fig. 7. Porosity and density of (5RE0.2)3NbO7 ceramic foams with different (a) sintering temperatures, (b) solid loadings; Thermal conductivity and compressive strength of (5RE0.2)3NbO7 ceramic foams with different (c) sintering temperatures, (d) solid loadings.
Fig. 9. (a) A photograph of (5RE0.2)3NbO7 ceramic foam sample on the flame; (b) Heating surface view; (c) Side view; (d) Back view at different times.
[1] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
[2] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI PMID |
[3] |
R.M. Leckie, S. Krämer, M. Rühle, C.G. Levi, Acta Mater 53 (2005) 3281-3292.
DOI URL |
[4] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[5] | J. Yang, X. Qian, W. Pan, R.G. Yang, Z. Li, Y. Han, M. Zhao, M.Z. Huang, C.L. Wan, Adv. Mater. 31 (2019) 1808222. |
[6] |
L. Chen, M.Y. Hu, F.S. Wu, P. Song, J. Feng, J. Alloy. Compd. 788 (2019) 1231-1239.
DOI |
[7] |
L. Cai, J.C. Nino, J. Eur. Ceram. Soc. 27 (2007) 3971-3976.
DOI URL |
[8] |
Y. Doi, Y. Harada, Y. Hinatsu, J. Solid State Chem. 182 (2009) 709-715.
DOI URL |
[9] |
J. Yang, W. Pan, Y. Han, M. Zhao, M.Z. Huang, C.L. Wan, J. Am. Ceram. Soc. 103 (2020) 2302-2308.
DOI |
[10] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[11] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[12] |
H.M. Xiang, Y. Xing, F.Z. Dai, H.J. Wang, L. Su, L. Miao, G.J. Zhang, Y.G. Wang, X.W. Qi, L. Yao, H.L. Wang, B. Zhao, J.Q. Li, Y.C. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[13] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[14] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896.
DOI URL |
[15] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, W. Xu, K. Sun, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 48 (2020) 57-62.
DOI URL |
[16] |
Z.F. Zhao, H.M. Xiang, H. Chen, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Adv. Ceram. 9 (2020) 595-605.
DOI URL |
[17] |
F. Li, L. Zhou, J.X. Liu, Y.C. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582.
DOI URL |
[18] |
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4 (2016) 9536-9541.
DOI URL |
[19] |
L.K. Cong, W. Li, J.C. Wang, S.Y. Gu, S.Y. Zhang, J. Mater. Sci. Technol. 101 (2022) 199-204.
DOI URL |
[20] |
C. Peng, X. Gao, M.Z. Wang, L.L. Wu, H. Tang, X.M. Li, Q. Zhang, Y. Ren, F.X. Zhang, Y.H. Wang, B. Zhang, B. Gao, Q. Zou, Y.C. Zhao, Q. Yang, D.X. Tian, H. Xiao, H.Y. Gou, W.G. Yang, X.D. Bai, W.L. Mao, H.K. Mao, Appl. Phys. Lett. 114 (2019) 011905.
DOI URL |
[21] |
H.C. Xiang, L. Yao, J.Q. Chen, A.H. Yang, H.T. Yang, L. Fang, J. Mater. Sci. Technol. 93 (2021) 28-32.
DOI URL |
[22] |
L.K. Cong, S.Y. Zhang, S.Y. Gu, W. Li, J. Mater. Sci. Technol. 85 (2021) 152-157.
DOI URL |
[23] |
H.L. Zhu, L. Liu, H.M. Xiang, F.Z. Dai, X.H. Wang, Z. Ma, Y.B. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 104 (2022) 131-144.
DOI URL |
[24] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 47 (2020) 45-51.
DOI URL |
[25] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2227-2231.
DOI URL |
[26] |
J.T. Zhu, X.Y. Meng, J. Xu, P. Zhang, Z.H. Lou, M.J. Reece, F. Gao, J. Eur. Ceram. Soc. 41 (2021) 1052-1057.
DOI URL |
[27] |
S. Akamine, M. Fujita, J. Eur. Ceram. Soc. 34 (2014) 4031-4036.
DOI URL |
[28] |
H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2404-2408.
DOI |
[29] |
J.M. Tulliani, C. Bartuli, E. Bemporad, V. Naglieri, M. Sebastiani, Ceram. Int. 35 (2009) 2481-2491.
DOI URL |
[30] |
H.L. Fu, Q. Fu, N. Zhou, W.H. Huang, M.N. Rahaman, D.P. Wang, X. Liu, Mater. Sci. Eng. C 29 (2009) 2275-2281.
DOI URL |
[31] |
H.F. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Nat. Mater. 4 (2005) 787-793.
DOI URL |
[32] | U.T. Gonzenbach, A.R. Studart, D. Steinlin, E. Tervoort, L.J. Gauckler, J. Am. Ce- ram. Soc. 90 (2007) 3407-3414. |
[33] |
U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Angew. Chem. Int. Ed. 45 (2006) 3526-3530.
DOI URL |
[34] |
X.Y. Meng, J. Xu, J.T. Zhu, Z.L. Li, J. Zhao, M.J. Reece, F. Gao, J. Am. Ceram. Soc. 103 (2020) 6088-6095.
DOI URL |
[35] |
X.Y. Meng, J. Xu, J.T. Zhu, P. Zhang, A. Rydosz, M.J. Reece, F. Gao, Scr. Mater. 194 (2021) 113714.
DOI URL |
[36] |
W.L. Huo, S. Yan, J.M. Wu, J.J. Liu, Y.G. Chen, Y.A. Qu, X.Y. Tang, J.L. Yang, J. Am. Ceram. Soc. 100 (2017) 5502-5511.
DOI URL |
[37] |
B.Y. Shen, X. Chen, D.L. Cai, H. Xiong, X. Liu, C.G. Meng, Y. Han, F. Wei, Adv. Mater. 32 (2020) 1906103.
DOI URL |
[38] |
M. Campanini, R. Erni, C.H. Yang, R. Ramesh, M.D. Rossell, Nano Lett 18 (2018) 717-724.
DOI PMID |
[39] |
Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang, S.J. Pennycook, Science 348 (2015) 547-551.
DOI PMID |
[40] |
Y.J. Gong, Z. Liu, A.R. Lupini, G. Shi, J.H. Lin, S. Najmaei, Z. Lin, A.L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, P.M. Ajayan, Nano Lett 14 (2014) 442-449.
DOI URL |
[41] |
J.J. Yu, C.G. Fu, Y.T. Liu, K.Y. Xia, U. Aydemir, T.C. Chasapis, G.J. Snyder, X.B. Zhao, T.J. Zhu, Adv. Energy Mater. 8 (2018) 1701313.
DOI URL |
[42] |
K.Y. Xia, Y.T. Liu, S. Anand, G.J. Snyder, J.Z. Xin, J.J. Yu, X.B. Zhao, T.J. Zhu, Adv. Funct. Mater. 28 (2018) 1705845.
DOI URL |
[43] |
F.Y. Yang, Y.W. Yao, Z.C. Yang, S. Zhao, G.B. Chen, K.F. Li, Ceram. Int. 47 (2021) 18351-18357.
DOI URL |
[44] |
Y. Zhang, Y.J. Wu, X.K. Yang, D.H. Li, X.Y. Zhang, X. Dong, X.H. Yao, J.C. Liu, A.R. Guo, J. Eur. Ceram. Soc. 40 (2021) 2090-2096.
DOI URL |
[45] |
K. Su, Y. Wang, K.X. Hu, X. Fang, J. Yao, Q. Li, J. Yang, ACS Appl. Mater. Interfaces 13 (2021) 22017-22030.
DOI URL |
[46] | A. Chithra, P. Wilson, S. Vijayan, R. Rajeev, K. Prabhakaran, J. Mater. Sci. Tech- nol. 94 (2021) 113-122. |
[47] |
F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu, J. Mater. Sci. Technol. 48 (2020) 175-179.
DOI |
[48] |
L. Xie, D.X. Yao, Y.F. Xia, J.W. Yin, H.Q. Liang, K.H. Zuo, Y.P. Zeng, J. Eur. Ceram. Soc. 39 (2019) 2036-2041.
DOI |
[49] |
A.G. Leach. J. Phy. D: Appl. Phys. 26 (1993) 733-739.
DOI URL |
[50] |
L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, H.P. Zhang, Int. J. Heat Mass Tran. 68 (2014) 295-298.
DOI URL |
[1] | Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 101-108. |
[2] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[3] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[4] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[5] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[6] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
[7] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[8] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
[9] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[10] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[11] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[12] | Menghe Zhu, Zhewen Ma, Lei Liu, Jianzhong Zhang, Siqi Huo, Pingan Song. Recent advances in fire-retardant rigid polyurethane foam [J]. J. Mater. Sci. Technol., 2022, 112(0): 315-328. |
[13] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[14] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[15] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||