J. Mater. Sci. Technol. ›› 2022, Vol. 112: 315-328.DOI: 10.1016/j.jmst.2021.09.062
• Research Article • Previous Articles Next Articles
Menghe Zhua,b, Zhewen Maa, Lei Liua,*(
), Jianzhong Zhanga, Siqi Huoc, Pingan Songd,*(
)
Received:2021-08-17
Revised:2021-09-25
Accepted:2021-09-26
Published:2021-12-29
Online:2021-12-29
Contact:
Lei Liu,Pingan Song
About author:pingan.song@usq.edu.au, pingansong@gmail.com (P. Song).1 These authors contributed equally to this work.
Menghe Zhu, Zhewen Ma, Lei Liu, Jianzhong Zhang, Siqi Huo, Pingan Song. Recent advances in fire-retardant rigid polyurethane foam[J]. J. Mater. Sci. Technol., 2022, 112: 315-328.
| Flame retardant | ϕVM-0(wt%) | LOI(%) | UL-94rating | Change (%) | Refs. | |||
|---|---|---|---|---|---|---|---|---|
| PHRR | THR | Thermal conductivity | ||||||
| EG and derivatives | EG-300 µm particle size | 10.0 | 29.8 | V-0 | -57.7 | -43.8 | +10.8 | [ |
| EG-500 µm particle size | 10.0 | 31.8 | V-0 | -54.1 | -47.2 | +6.3 | [ | |
| EG@MH | 11.5 | 32.6 | - | - | - | - | [ | |
| EG@PMA | 10.0 | 26.0 | V-1 | - | - | - | [ | |
| EG@PGMA | 10.0 | 27.5 | V-0 | - | - | - | [ | |
| APP and derivatives | APP@MF | 10.4 | 21.3 | V-1 | - | - | +2.8 | [ |
| APP@VMF | 16.7 | 25.5 | V-0 | - | - | - | [ | |
| APP@DFN | 16.7 | 24.5 | V-0 | - | - | - | [ | |
| APP@PM | 25.0 | 25.3 | - | -33.7 | -39.2 | - | [ | |
| APP@PO | 20.0 | 24.8 | - | -39.4 | -33.9 | - | [ | |
| APP@β-Cyclodextrin | 25.0 | 24.9 | - | -43.8 | -37.6 | - | [ | |
| APP@M | 16.6 | 23.1 | V-0 | -47.6 | -32.8 | - | [ | |
| APP@BM | 16.7 | 24.0 | V-0 | - | - | - | [ | |
| APP@MH | 16.7 | 24.4 | V-0 | - | - | - | [ | |
| Melamine-based compounds | PUTM | 6.0 | 26.1 | - | - | -12.3 | - | [ |
| MATMP | 15.0 | 25.5 | V-0 | -34.0 | -16.0 | +16.7 | [ | |
| MIFR | 9.0 | 24.5 | V-0 | - | - | - | [ | |
| DPPM | 9.0 | 29.5 | V-0 | -50.4 | -35.7 | - | [ | |
| ZMD | 10.0 | 25.4 | - | -50.1 | -61.8 | - | [ | |
| Other phosphorus-containing compounds | ADP | 30.0 | 23.0 | V-1 | -20.3 | -3.5 | +19.4 | [ |
| Zn-AMP | 20.0 | 25.0 | V-0 | -61.0 | -46.1 | +3.3 | [ | |
| TSPB | 10.6 | 26.5 | V-0 | - | - | - | [ | |
| DOPO-BA | 20.0 | 28.1 | V-0 | -8.5 | -20.5 | -23 | [ | |
| MFcP | 13.8 | - | V-0 | -22.4 | - | +8.2 | [ | |
| HPCTP | 20.0 | 28.7 | - | -46.8 | -39.0 | - | [ | |
Table 1. One-component system for RPUF.
| Flame retardant | ϕVM-0(wt%) | LOI(%) | UL-94rating | Change (%) | Refs. | |||
|---|---|---|---|---|---|---|---|---|
| PHRR | THR | Thermal conductivity | ||||||
| EG and derivatives | EG-300 µm particle size | 10.0 | 29.8 | V-0 | -57.7 | -43.8 | +10.8 | [ |
| EG-500 µm particle size | 10.0 | 31.8 | V-0 | -54.1 | -47.2 | +6.3 | [ | |
| EG@MH | 11.5 | 32.6 | - | - | - | - | [ | |
| EG@PMA | 10.0 | 26.0 | V-1 | - | - | - | [ | |
| EG@PGMA | 10.0 | 27.5 | V-0 | - | - | - | [ | |
| APP and derivatives | APP@MF | 10.4 | 21.3 | V-1 | - | - | +2.8 | [ |
| APP@VMF | 16.7 | 25.5 | V-0 | - | - | - | [ | |
| APP@DFN | 16.7 | 24.5 | V-0 | - | - | - | [ | |
| APP@PM | 25.0 | 25.3 | - | -33.7 | -39.2 | - | [ | |
| APP@PO | 20.0 | 24.8 | - | -39.4 | -33.9 | - | [ | |
| APP@β-Cyclodextrin | 25.0 | 24.9 | - | -43.8 | -37.6 | - | [ | |
| APP@M | 16.6 | 23.1 | V-0 | -47.6 | -32.8 | - | [ | |
| APP@BM | 16.7 | 24.0 | V-0 | - | - | - | [ | |
| APP@MH | 16.7 | 24.4 | V-0 | - | - | - | [ | |
| Melamine-based compounds | PUTM | 6.0 | 26.1 | - | - | -12.3 | - | [ |
| MATMP | 15.0 | 25.5 | V-0 | -34.0 | -16.0 | +16.7 | [ | |
| MIFR | 9.0 | 24.5 | V-0 | - | - | - | [ | |
| DPPM | 9.0 | 29.5 | V-0 | -50.4 | -35.7 | - | [ | |
| ZMD | 10.0 | 25.4 | - | -50.1 | -61.8 | - | [ | |
| Other phosphorus-containing compounds | ADP | 30.0 | 23.0 | V-1 | -20.3 | -3.5 | +19.4 | [ |
| Zn-AMP | 20.0 | 25.0 | V-0 | -61.0 | -46.1 | +3.3 | [ | |
| TSPB | 10.6 | 26.5 | V-0 | - | - | - | [ | |
| DOPO-BA | 20.0 | 28.1 | V-0 | -8.5 | -20.5 | -23 | [ | |
| MFcP | 13.8 | - | V-0 | -22.4 | - | +8.2 | [ | |
| HPCTP | 20.0 | 28.7 | - | -46.8 | -39.0 | - | [ | |
| Flame retardant | ϕ(wt%) | LOI(%) | UL-94rating | Change (%) | Refs. | |||
|---|---|---|---|---|---|---|---|---|
| PHRR | THR | Thermal conductivity | ||||||
| Two component system | EG/Zr-AMP | 12EG/3Zr-AMP | 30.5 | V-0 | -74.4 | -61.5 | +16.7 | [ |
| EG/APP | 10EG/10APP | 29.7 | V-0 | -54.1 | -14.3 | +15.4 | [ | |
| EG/Mg-AMP | 12EG/3Mg-AMP | 29.5 | V-0 | -52.4 | -42.9 | +13.3 | [ | |
| EG/DOPO-HQ | 10EG/5DOPO-HQ | 28.7 | V-0 | -58.5 | 0.0 | - | [ | |
| EG/BDEMPP | 10EG/15BDEMPP | 25.7 | V-0 | -45.1 | -35.6 | - | [ | |
| EG/mSS | 10EG/10mSS | 24.0 | V-0 | -55.0 | -47.0 | 3.9 | [ | |
| EG/DBDPE | 15EG/5DBDPE | 34.0 | V-0 | - | - | - | [ | |
| EG/BAPP | 7.4EG/0.6BAPP | 29.8 | V-0 | -44.8 | -23.5 | 16.4 | [ | |
| EG/APB | 15EG/5APB | 27.9 | - | -57.5 | -42.8 | +0.5 | [ | |
| EG/AHP | 15EG/5AHP | 37.8 | - | -55.1 | -80.0 | - | [ | |
| EG/EMD | 8EG/18EMD | 31.3 | - | -55.5 | -41.5 | +13.6 | [ | |
| EG/DTP | 7.9EG/15.8DTP | 30.2 | - | -48.3 | -6.5 | - | [ | |
| EG/DMMP | 12.8EG/3.2DMMP | 33.0 | - | -65.0 | -57.8 | +10.0 | [ | |
| EG/MAPP | 8.2EG/8.2MAPP | 23.0 | - | -63.5 | -45.6 | - | [ | |
| EG/PEPA | 15EG/5PEPA | 31.9 | - | -65.0 | -37.2 | - | [ | |
| DMMP/MAPP | 11.5DMMP/4.9MAPP | 25.8 | - | -50.9 | -44.9 | - | [ | |
| DMMP/SNGO | 6.5DMMP/ 0.7SNGO | 24.0 | - | -44.8 | -43.8 | -0.8 | [ | |
| ATH/DMMP | 60ATH/10DMMP | 32.4 | - | - | - | - | [ | |
| ATH/TPP | 29ATH/5.8TPP | 29.5 | - | - | - | +8.7 | [ | |
| ATH/MDH | 7.5ATH/2.5MDH | - | - | -50.8 | -10.7 | - | [ | |
| Multi-component system | EG/DMMP/fGO | 6.8EG/2.3DMMP/ 0.2fGO | 28.1 | V-0 | -32.9 | -25.1 | - | [ |
| EG/SiO2/IL | 5EG/1SiO2/0.33IL | - | - | -70.0 | -19.2 | +3.3 | [ | |
| EG/ATH/BH | 12.0EG/27.4ATH/ 27.4BH | 34.0 | - | -63.7 | -25.8 | - | [ | |
| EG/MPP/LDH | 3.7EG/3.7MPP/ 1.1 LDH | 28.0 | - | -38.8 | -5.2 | +4.3 | [ | |
| APP/EMF/DMMP | 2.8APP/28.3EMF/ 2.8DMMP | 29.1 | - | -10.3 | -22.4 | - | [ | |
| APP/Zeolite/DMMP | 8APP/5Zeolite/ 8DMMP | 29.5 | - | -56.0 | -21.4 | - | [ | |
| MAPP/MEG/ OLDH | 3.7MAPP/3.7MEG/1.1OLDH | 26.6 | - | -43.8 | -20.2 | +4.3 | [ | |
Table 2. The performances of two and multi-component systems.
| Flame retardant | ϕ(wt%) | LOI(%) | UL-94rating | Change (%) | Refs. | |||
|---|---|---|---|---|---|---|---|---|
| PHRR | THR | Thermal conductivity | ||||||
| Two component system | EG/Zr-AMP | 12EG/3Zr-AMP | 30.5 | V-0 | -74.4 | -61.5 | +16.7 | [ |
| EG/APP | 10EG/10APP | 29.7 | V-0 | -54.1 | -14.3 | +15.4 | [ | |
| EG/Mg-AMP | 12EG/3Mg-AMP | 29.5 | V-0 | -52.4 | -42.9 | +13.3 | [ | |
| EG/DOPO-HQ | 10EG/5DOPO-HQ | 28.7 | V-0 | -58.5 | 0.0 | - | [ | |
| EG/BDEMPP | 10EG/15BDEMPP | 25.7 | V-0 | -45.1 | -35.6 | - | [ | |
| EG/mSS | 10EG/10mSS | 24.0 | V-0 | -55.0 | -47.0 | 3.9 | [ | |
| EG/DBDPE | 15EG/5DBDPE | 34.0 | V-0 | - | - | - | [ | |
| EG/BAPP | 7.4EG/0.6BAPP | 29.8 | V-0 | -44.8 | -23.5 | 16.4 | [ | |
| EG/APB | 15EG/5APB | 27.9 | - | -57.5 | -42.8 | +0.5 | [ | |
| EG/AHP | 15EG/5AHP | 37.8 | - | -55.1 | -80.0 | - | [ | |
| EG/EMD | 8EG/18EMD | 31.3 | - | -55.5 | -41.5 | +13.6 | [ | |
| EG/DTP | 7.9EG/15.8DTP | 30.2 | - | -48.3 | -6.5 | - | [ | |
| EG/DMMP | 12.8EG/3.2DMMP | 33.0 | - | -65.0 | -57.8 | +10.0 | [ | |
| EG/MAPP | 8.2EG/8.2MAPP | 23.0 | - | -63.5 | -45.6 | - | [ | |
| EG/PEPA | 15EG/5PEPA | 31.9 | - | -65.0 | -37.2 | - | [ | |
| DMMP/MAPP | 11.5DMMP/4.9MAPP | 25.8 | - | -50.9 | -44.9 | - | [ | |
| DMMP/SNGO | 6.5DMMP/ 0.7SNGO | 24.0 | - | -44.8 | -43.8 | -0.8 | [ | |
| ATH/DMMP | 60ATH/10DMMP | 32.4 | - | - | - | - | [ | |
| ATH/TPP | 29ATH/5.8TPP | 29.5 | - | - | - | +8.7 | [ | |
| ATH/MDH | 7.5ATH/2.5MDH | - | - | -50.8 | -10.7 | - | [ | |
| Multi-component system | EG/DMMP/fGO | 6.8EG/2.3DMMP/ 0.2fGO | 28.1 | V-0 | -32.9 | -25.1 | - | [ |
| EG/SiO2/IL | 5EG/1SiO2/0.33IL | - | - | -70.0 | -19.2 | +3.3 | [ | |
| EG/ATH/BH | 12.0EG/27.4ATH/ 27.4BH | 34.0 | - | -63.7 | -25.8 | - | [ | |
| EG/MPP/LDH | 3.7EG/3.7MPP/ 1.1 LDH | 28.0 | - | -38.8 | -5.2 | +4.3 | [ | |
| APP/EMF/DMMP | 2.8APP/28.3EMF/ 2.8DMMP | 29.1 | - | -10.3 | -22.4 | - | [ | |
| APP/Zeolite/DMMP | 8APP/5Zeolite/ 8DMMP | 29.5 | - | -56.0 | -21.4 | - | [ | |
| MAPP/MEG/ OLDH | 3.7MAPP/3.7MEG/1.1OLDH | 26.6 | - | -43.8 | -20.2 | +4.3 | [ | |
Fig. 4. (a) Preparation and expansion processes of expandable graphite, (b) Preparation of EG@MH, (c) EG-PMA and (d) EG@PGMA. (a) [42], Copyright 2019. Reproduced with permission from Elsevier Science Ltd., (b) [43], Copyright 2018. Reproduced with permission from John Wiley & Sons Inc., (c) [44], Copyright 2011. Reproduced with permission from John Wiley & Sons Inc., and (d) [45], Copyright 2015. Reproduced with permission from John Wiley & Sons Inc.
Fig. 5. (a) Performance comparisons of RPUF containing additive flame retardants with a UL-94 V-0 rating. (b) The relationship between LOI and thermal conductivity of RPUF/ additive flame retardants with a UL-94 V-0 rating. (c) The relationship between foam density and thermal conductivity of RPUF with additive flame retardants.
Fig. 6. Preparation of RPUF coated with (a, b) alginate/clay aerogel, (c, d) UV-curable intumescent coating and (e, f) silicone resin (poly-DDPM) and EG. (a, b) [104], Copyright 2016. Reproduced with permission from American Chemical Society, (c, d) [105], Copyright 2020. Reproduced with permission from Elsevier Science Ltd. and (e, f) [12], Copyright 2020. Reproduced with permission from Elsevier Science Ltd.
Fig. 8. (a) Flame-retardant performances of RPUF with different coating-type flame retardants, (b) comparisons of THR reduction and TSR reduction, (c) comparisons of time to PHRR and PHRR reduction, (d) comparisons of char-TG700 °C and PHRR reduction.
| [1] | H. Singh, A.K. Jain, J. Appl. Polym. Sci. 111 (2009) 1115-1143. |
| [2] |
X. Li, Z.Q. Yu, L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50154.
DOI URL |
| [3] |
D.K. Jia, X.Y. Guo, J.Y. He, R.J. Yang, Polym. Degrad. Stab. 167 (2019) 189-200.
DOI URL |
| [4] |
H. Zhu, S.A. Xu, Constr. Build. Mater. 202 (2019) 718-726.
DOI URL |
| [5] |
H.T. Yang, B.B. Shi, Y.J. Xue, Z.W. Ma, L.N. Liu, L. Liu, Y.M. Yu, Z.Y. Zhang, P.K. Annamalai, P.A. Song, Biomacromolecules 22 (2021) 1432-1444.
DOI URL |
| [6] |
Y.J. Xue, M.X. Shen, Y.F. Zheng, W.Z. Tao, Y.X. Han, W.D. Li, P.A. Song, H. Wang, Compos. Part B Eng. 183 (2020) 107695.
DOI URL |
| [7] |
Y.J. Chen, L.S. Li, W. Wang, L.J. Qian, J. Appl. Polym. Sci. 134 (2017) 45369.
DOI URL |
| [8] |
S.Q. Huo, P.A. Song, B. Yu, S.Y. Ran, V.S. Chevali, L. Liu, Z. Fang, H. Wang, Prog. Polym. Sci. 114 (2021) 101366.
DOI URL |
| [9] |
Y.J. Chen, L.S. Li, X.Q. Qi, L.J. Qian, Compos. Part B Eng. 173 (2019) 106784.
DOI URL |
| [10] |
H. Sivriev, G. Borissov, L. Zabski, W. Walczyk, Z. Jedlinski, J. Appl. Polym. Sci. 27 (1982) 4137-4147.
DOI URL |
| [11] |
M. Zhang, Z.Y. Luo, J.W. Zhang, S.G. Chen, Y.H. Zhou, Polym. Degrad. Stab. 120 (2015) 427-434.
DOI URL |
| [12] |
S.H. Wang, X.G. Wang, X. Wang, H.F. Li, J. Sun, W.X. Sun, Y. Yao, X.Y. Gu, S. Zhang, Chem. Eng. J. 385 (2020) 123755.
DOI URL |
| [13] |
P.M. Visakh, A.O. Semkin, I.A. Rezaev, A.V. Fateev, Constr. Build. Mater. 227 (2019) 116673.
DOI URL |
| [14] | H. Vahabi, H. Rastin, E. Movahedifar, K. Antoun, N. Brosse, M.R. Saeb, Poly-mers 12 (2020) 1234. |
| [15] |
C.N. Hoang, C.T. Pham, T.M. Dang, D. Hoang, P.C. Lee, S.J. Kang, J. Kim, Polymers 11 (2019) 236.
DOI URL |
| [16] | W. Xu, G.J. Wang, J. Appl. Polym. Sci. 132 (2015) 42298. |
| [17] |
W.Y. Xing, H.X. Yuan, P. Zhang, H.Y. Yang, L. Song, Y. Hu, J. Polym. Res. 20 (2013) 234.
DOI URL |
| [18] |
N.J. Wu, F.K. Niu, W.C. Lang, J.H. Yu, G.L. Fu, Mater. Des. 181 (2019) 107929.
DOI URL |
| [19] |
Y. Yuan, H.Y. Yang, B. Yu, Y.Q. Shi, W. Wang, L. Song, Y. Hu, Y.M. Zhang, Ind. Eng. Chem. Res. 55 (2016) 10813-10822.
DOI URL |
| [20] |
S. Bhoyate, M. Ionescu, P.K. Kahol, J. Chen, S.R. Mishra, R.K. Gupta, J. Appl. Polym. Sci. 135 (2018) 46224.
DOI URL |
| [21] |
D.K. Jia, J. Hu, J.Y. He, R.J. Yang, J. Appl. Polym. Sci. 136 (2019) 47943.
DOI URL |
| [22] |
J.S. Xu, Y.Q. Wu, B.L. Zhang, G.L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50223.
DOI URL |
| [23] |
Y.F. Luo, Z.N. Miao, T. Sun, H.W. Zou, M. Liang, S.T. Zhou, Y. Chen, J. Appl. Polym. Sci. 138 (2021) 49920.
DOI URL |
| [24] |
K.B. Zhang, Y.B. Hong, N.G. Wang, Y.H. Wang, J. Appl. Polym. Sci. 135 (2018) 45779.
DOI URL |
| [25] |
M.H. Zhu, L. Liu, Z.Z. Wang, J. Hazard. Mater. 392 (2020) 122343.
DOI URL |
| [26] |
M. Zhang, J.W. Zhang, S.G. Chen, Y.H. Zhou, Polym. Degrad. Stab. 110 (2014) 27-34.
DOI URL |
| [27] |
Y.L. Liu, J.Y. He, R.J. Yang, J. Mater. Sci. 52 (2016) 1-13.
DOI URL |
| [28] |
Y. Yuan, C. Ma, Y.Q. Shi, L. Song, Y. Hu, W.Z. Hu, Mater. Chem. Phys. 211 (2018) 42-53.
DOI URL |
| [29] |
C.B. Liang, Y.Z. Du, Y.Y. Wang, A.J. Ma, S. Huang, Z.L. Ma, Adv. Compos. Hybrid Mater. 4 (2021) 979-988.
DOI URL |
| [30] |
L. Liu, Z.Z. Wang, J. Hazard. Mater. 357 (2018) 89-99.
DOI URL |
| [31] |
L. Liu, M.H. Zhu, Y.Q. Shi, X.D. Xu, Z.W. Ma, B. Yu, S.Y. Fu, G.B. Huang, H. Wang, P.A. Song, Chem. Eng. J. 424 (2021) 130338.
DOI URL |
| [32] |
M. Zhu, L. Liu, Z. Wang, Compos. Part B Eng. 199 (2020) 108283.
DOI URL |
| [33] |
A.M. Borreguero, M.M. Velencoso, J.F. Rodríguez, Á. Serrano, M.J. Carrero, M. J. Ramos, J. Appl. Polym. Sci. 136 (2019) 47780.
DOI URL |
| [34] |
D.H. Wu, P.H. Zhao, M. Zhang, Y.Q. Liu, High Perform. Polym. 25 (2013) 868-875.
DOI URL |
| [35] |
H.Y. Ding, K. Huang, S.H. Li, L.N. Xu, J.L. Xia, M. Li, J. Anal. Appl. Pyrolysis 128 (2017) 102-113.
DOI URL |
| [36] |
P. Acuña, J. Zhang, G.Z. Yin, X.Q. Liu, D.Y. Wang, J. Mater. Sci. 56 (2021) 2684-2701.
DOI URL |
| [37] |
S.X. Wang, H.B. Zhao, W.H. Rao, S.C. Huang, T. Wang, W. Liao, Y.Z. Wang, Polymer 153 (2018) 616-625.
DOI URL |
| [38] |
R. Yang, B. Wang, X.F. Han, B.B. Ma, J.C. Li, Polym. Degrad. Stab. 144 (2017) 62-69.
DOI URL |
| [39] |
J. Tian, Y. Yang, T. Xue, G. Chao, W. Fan, T. Liu, J. Mater. Sci. Technol. 105 (2022) 194-202.
DOI URL |
| [40] |
S. Michałowski, E. Hebda, K. Pielichowski, J. Therm. Anal. Calorim. 130 (2017) 155-163.
DOI URL |
| [41] | S. Bhoyate, M. Ionescu, P.K. Kahol, R.K. Gupta, Ind. Crop. Prod. 123 (2018) 4 80-4 88. |
| [42] |
C.L. Dai, C.L. Gu, B.C. Liu, Y.H. Lyu, X. Yao, H.N. He, J.C. Fang, G. Zhao, J. Mol. Liq. 293 (2019) 111535.
DOI URL |
| [43] |
Y.T. Wang, F. Wang, Q.X. Dong, W.J. Yuan, P. Liu, Y.F. Ding, S.M. Zhang, M. S. Yang, G.Q. Zheng, J. Appl. Polym. Sci. 135 (2018) 46749.
DOI URL |
| [44] |
X.G. Zhang, L.L. Ge, W.Q. Zhang, J.H. Tang, L. Ye, Z.M. Li, J. Appl. Polym. Sci. 122 (2011) 932-941.
DOI URL |
| [45] | X.L. Zhang, H.J. Duan, D.X. Yan, L.Q. Kang, W.Q. Zhang, J.H. Tang, Z.M. Li, J. Appl. Polym. Sci. 132 (2015) 42364. |
| [46] | P Acuña, M. Santiago Calvo, F. Villafañe, M.A. Rodríguez Perez, J. Rosas, D.Y. Wang, Polym. Compos. 40 (2019) 1705-1715. |
| [47] |
P. Acuña, Z. Li, M. Santiago Calvo, F. Villafañe, M.Á Rodríguez Perez, D. Y. Wang, Polymers 11 (2019) 168.
DOI URL |
| [48] |
G. Tang, H.H. Jiang, Y.D. Yang, D.P. Chen, C.L. Liu, P. Zhang, L. Zhou, X.J. Huang, H. Zhang, X.Y. Liu, J. Polym. Res. 27 (2020) 375.
DOI URL |
| [49] |
F.B. Luo, K. Wu, M.G. Lu, S.B. Nie, X.Y. Li, X.X. Guan, J. Therm. Anal. Calorim. 120 (2015) 1327-1335.
DOI URL |
| [50] |
F.B. Luo, K. Wu, D.F. Li, J. Zheng, H.L. Guo, Q. Zhao, M.G. Lu, Polym. Compos. 38 (2015) 2762-2770.
DOI URL |
| [51] |
S.X. Li, Y. Zhou, J.J. Cheng, Q.Y. Ma, F. Zhang, Y. Wang, M. Liu, D. Wang, W.J. Qu, J. Appl. Polym. Sci. 137 (2020) 48307.
DOI URL |
| [52] |
J.J. Cheng, S.S. Niu, D. Ma, Y. Zhou, F. Zhang, W.J. Qu, D. Wang, S.X. Li, X. L. Zhang, X.Q. Chen, J. Appl. Polym. Sci. 137 (2020) 49591.
DOI URL |
| [53] |
Q.M. Li, J.Y. Wang, L.M. Chen, H. Shi, J.W. Hao, Polym. Degrad. Stab. 161 (2019) 166-174.
DOI URL |
| [54] |
Y.J. Chen, L.S. Li, W. Wang, L.J. Qian, J. Appl. Polym. Sci. 134 (2017) 45369.
DOI URL |
| [55] |
F.B. Luo, K. Wu, M.G. Lu, RSC Adv. 6 (2016) 13418-13425.
DOI URL |
| [56] | F.B. Luo, K. Wu, Y.W. Li, J. Zheng, H.L. Guo, M.G. Lu, J. Appl. Polym. Sci. 132 (2015) 71-78. |
| [57] |
Q.W. Xu, H.M. Zhai, G.J. Wang, Fire Mater. 39 (2015) 271-282.
DOI URL |
| [58] |
L. Liu, Z.Z. Wang, X.Y. Xu, J. Appl. Polym. Sci. 134 (2017) 45234.
DOI URL |
| [59] |
M. Gao, W.H. Wu, S. Liu, Y.X. Wang, T.F. Shen, J. Therm. Anal. Calorim. 117 (2014) 1419-1425.
DOI URL |
| [60] |
C. Wang, Y.C. Wu, Y.C. Li, Q. Shao, X.R. Yan, C. Han, Z. Wang, Z. Liu, Z.H. Guo, Polym. Adv. Technol. 29 (2018) 668-676.
DOI URL |
| [61] |
W.Z. Xu, G.S. Wang, J.Y. Xu, Y.C. Liu, R. Chen, H.Y. Yan, J. Hazard. Mater. 379 (2019) 120819.
DOI URL |
| [62] |
G. Tang, L. Zhou, P. Zhang, Z.Q. Han, D.P. Chen, X.Y. Liu, Z.J. Zhou, J. Therm. Anal. Calorim. 140 (2020) 625-636.
DOI URL |
| [63] |
L. Liu, Z.Z. Wang, Polym. Degrad. Stab. 154 (2018) 62-72.
DOI URL |
| [64] | D.H. Wu, P.H. Zhao, Y.Q. Liu, X.Y. Liu, X.F. Wang, J. Appl. Polym. Sci. 131 (2014) 39581. |
| [65] |
Z.J. Cao, X. Dong, T. Fu, S.B. Deng, W. Liao, Y.Z. Wang, Polym. Degrad. Stab. 136 (2017) 103-111.
DOI URL |
| [66] |
P.D. Zhang, D. Ma, J.J. Cheng, X.L. Zhang, X.Q. Chen, Polym. Compos. 41 (2020) 3521-3527.
DOI URL |
| [67] |
W. Xu, G.J. Wang, X.R. Zheng, Polym. Degrad. Stab. 111 (2015) 142-150.
DOI URL |
| [68] |
X.Y. Pang, Y.P. Xin, X.Z. Shi, J.Z. Xu, Polym. Eng. Sci. 59 (2019) 1381-1394.
DOI URL |
| [69] |
Z.H. Zheng, J.T. Yan, H.M. Sun, Z.Q. Cheng, W.J. Li, H.Y. Wang, X.J. Cui, Polym. Int. 63 (2013) 84-92.
DOI URL |
| [70] |
L. Ye, X.Y. Meng, X.M. Liu, J.H. Tang, Z.M. Li, J. Appl. Polym. Sci. 111 (2010) 2372-2380.
DOI URL |
| [71] |
S.J. Wang, L.J. Qian, F. Xin, Polym. Compos. 39 (2016) 329-336.
DOI URL |
| [72] |
L.J. Li, Y.J. Chen, L.J. Qian, B. Xu, W. Xi, J. Appl. Polym. Sci. 135 (2018) 45960.
DOI URL |
| [73] |
D.Y. Liu, B. Zhao, J.S. Wang, P.W. Liu, Y.Q. Liu, J. Appl. Polym. Sci. 135 (2018) 46434.
DOI URL |
| [74] |
L. Liu, Z.Z. Wang, Mater. Chem. Phys. 219 (2018) 318-327.
DOI URL |
| [75] |
L. Liu, Z.Z. Wang, M.H. Zhu, Polym. Degrad. Stab. 170 (2019) 108997.
DOI URL |
| [76] |
X.X. Shi, S.H. Jiang, J.Y. Zhu, G.H. Li, X.F. Peng, RSC Adv. 8 (2018) 9985-9995.
DOI URL |
| [77] |
E. Akdogan, M. Erdem, M.E. Ureyen, M. Kaya, Polym. Compos. 41 (2020) 1749-1762.
DOI URL |
| [78] |
G. Tang, X.L. Liu, Y.D. Yang, D.P. Chen, H. Zhang, L. Zhou, P. Zhang, H.H. Jiang, D. Deng, Adv. Powder Technol. 31 (2020) 1420-1430.
DOI URL |
| [79] |
Z.Y. Zhang, D.S. Li, M.J. Xu, B. Li, Polym. Degrad. Stab. 173 (2020) 109077.
DOI URL |
| [80] | M. Thirumal, N.K. Singha, D. Khastgir, B.S. Manjunath, Y.P. Naik, J. Appl. Polym. Sci. 116 (2010) 2260-2268. |
| [81] |
A.Z. Zhang, Y.H. Zhang, F.Z. Lv, P.K. Chu, J. Appl. Polym. Sci. 128 (2013) 347-353.
DOI URL |
| [82] |
H. Chai, Q.L. Duan, L. Jiang, J.H. Sun, J. Therm. Anal. Calorim. 135 (2019) 2857-2868.
DOI |
| [83] | W.Z. Xu, L. Liu, S.Q. Wang, Y. Hu, J. Appl. Polym. Sci. 132 (2015) 42842. |
| [84] |
F.F. Feng, L.J. Qian, Polym. Compos. 35 (2014) 301-309.
DOI URL |
| [85] |
L.S. Li, Y.J. Chen, X.D. Wu, B. Xu, L.J. Qian, Polym. Adv. Technol. 30 (2019) 2721-2728.
DOI URL |
| [86] |
Z.Z. Wang, X.Y. Li, Polym. Plast. Technol. Eng. 57 (2018) 884-892.
DOI URL |
| [87] |
P. Acuña, X. Lin, M.S. Calvo, Z. Shao, N. Pérez, F. Villafañe, M.Á. Rodríguez-Pérez, D.Y. Wang, Polym. Degrad. Stab. 179 (2020) 109274.
DOI URL |
| [88] | M. Gao, J.F. Li, X. Zhou, Polym. Compos. 40 (2019) 1274-1282. |
| [89] |
A Str˛akowska. S. Członka, P. Konca, K. Strzelec, Appl. Sci. 10 (2020) 5817.
DOI URL |
| [90] |
W. Xi, L.J. Qian, L.J. Li, Polymers 11 (2019) 207.
DOI URL |
| [91] |
L.P. Gao, G.Y. Zheng, Y.H. Zhou, L.H. Hu, G.D. Feng, Y.L. Xie, Ind. Crop. Prod. 50 (2013) 638-647.
DOI URL |
| [92] |
H. Zhu, S.A. Xu, ACS Omega 5 (2020) 9658-9667.
DOI URL |
| [93] |
L.P. Gao, G.Y. Zheng, Y.H. Zhou, L.H. Hu, G.D. Feng, J. Therm. Anal. Calorim. 119 (2015) 411-424.
DOI URL |
| [94] |
W. Xi, L.J. Qian, Z.G. Huang, Y.F. Cao, L.J. Li, Polym. Degrad. Stab. 130 (2016) 97-102.
DOI URL |
| [95] |
A. Li, D.D. Yang, H.N. Li, C.L. Jiang, J.Z. Liang, J. Appl. Polym. Sci. 135 (2018) 46551.
DOI URL |
| [96] | F.Q. Qi, L. Wang, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Mater. Today Phys. 21 (2021) 100512. |
| [97] |
Z.W. Ma, J.Z. Zhang, L. Liu, H. Zheng, J.F. Dai, L.-C. Tang, P.A. Song, Compos. Commun. 29 (2022) 101046.
DOI URL |
| [98] |
Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang, X. Huang, J. Mater. Sci. Technol. 83 (2021) 219-227.
DOI URL |
| [99] |
X. Zhang, K. Zhou, W. Xu, J. Song, C. Deng, M. Liu, J. Mater. Sci. Technol. 31 (2015) 1006-1010.
DOI URL |
| [100] |
F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu, J. Mater. Sci. Technol. 48 (2020) 175-179.
DOI |
| [101] |
H.K. Peng, X.X. Wang, T.T. Li, S.Y. Huang, Q. Lin, B.C. Shiu, C.W. Lou, J.H. Lin, RSC Adv. 8 (2018) 33542-33550.
DOI URL |
| [102] |
Y.B. Huang, S.H. Jiang, R.C. Liang, Z.W. Liao, G.X. You, Compos. Part A Appl. Sci. Manuf. 125 (2019) 105534.
DOI URL |
| [103] |
S. Huang, L. Wang, Y.C. Li, C.B. Liang, J.L. Zhang, J. Appl. Polym. Sci. 138 (2021) 50649.
DOI URL |
| [104] |
H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, ACS Appl. Mater. Interfaces 8 (2016) 32557-32564.
DOI URL |
| [105] |
Y.B. Huang, S.H. Jiang, R.C. Liang, P. Sun, Y. Hai, L. Zhang, Chem. Eng. J. 391 (2020) 123621.
DOI URL |
| [106] |
Z.W. Ma, X.C. Liu, X.D. Xu, L. Liu, B. Yu, C. Maluk, G.B. Huang, H. Wang, P.A. Song, ACS Nano 15 (2021) 11667-11680.
DOI URL |
| [107] |
B. Dahlke, H. Larbig, H.D. Scherzer, R. Poltrock, J. Cell. Plast. 34 (1998) 361-379.
DOI URL |
| [108] |
Y. Hai, S.H. Jiang, C.L. Zhou, P. Sun, Y.B. Huang, S.C. Niu, Dalton Trans. 49 (2020) 5803-5814.
DOI URL |
| [109] |
J.W. Gu, C.B. Liang, X.M. Zhao, B. Gan, H. Qiu, Y.Q. Guo, X.T. Yang, Q.Y. Zhang, D. Y. Wang, Compos. Sci. Technol. 139 (2017) 83-89.
DOI URL |
| [110] |
J.W. Gu, J. Dang, Y.L. Wu, C. Xie, Y. Han, Polym. Plast. Technol. Eng. 51 (2012) 1198-1203.
DOI URL |
| [111] |
L. Wang, B. Tawiah, Y. Shi, S. Cai, X. Rao, C. Liu, Y. Yang, F. Yang, B. Yu, Y. Liang, L. Fu, Polymers 11 (2019) 1776.
DOI URL |
| [112] |
C.B. Liang, Y.X. Liu, Y.F. Ruan, H. Qiu, P. Song, J. Kong, H.B. Zhang, J.W. Gu, Compos. Part A Appl. Sci. Manuf. 139 (2020) 106143.
DOI URL |
| [113] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
| [114] |
K. Salasinska, M. Borucka, M. Leszczyńska, W. Zatorski, M. Celiński, A. Gajek, J. Ryszkowska, J. Therm. Anal. Calorim. 130 (2017) 131-141.
DOI URL |
| [115] | G. Sung, J.W. Kim, J.H. Kim, J. Ind. Eng. Chem. 44 (2016) 99-104. |
| [116] |
S.T. Moghaddam, M.R. Naimi-Jamal, J. Thermoplast. Compos. 32 (2018) 1224-1241.
DOI URL |
| [117] |
M.M. Bernal, M. Martin-Gallego, I. Molenberg, I. Huynen, M.A. López Manchado, R. Verdejo, RSC Adv. 4 (2014) 7911-7918.
DOI URL |
| [118] |
E. Akdogan, M. Erdem, M.E. Ureyen, M. Kaya, J. Appl. Polym. Sci. 137 (2020) 47611.
DOI URL |
| [119] |
L.F. Xu, X.D. Wu, L.S. Li, Y.J. Chen, Polym. Adv. Technol. 30 (2019) 1375-1385.
DOI URL |
| [120] |
Y.J. Chen, L.F. Xu, X.D. Wu, B. Xu, Thermochim. Acta 679 (2019) 178336.
DOI URL |
| [121] |
Y.J. Chen, W. Wang, Y. Qiu, L. Li, L.J. Qian, F. Xin, Polym. Degrad. Stab. 140 (2017) 166-175.
DOI URL |
| [122] |
Z.W. Ma, J.Z. Zhang, C. Maluk, Y.M. Yu, S.M. Seraji, B. Yu, Z.P. Fang, H. Wang, P.A. Song, Matter 5 (2022) 911-932.
DOI URL |
| [123] |
H.T. Ma, P.A. Song, Z.P. Fang, Sci. China Chem. 54 (2011) 302-313.
DOI URL |
| [124] |
Y.X. Jin, G.B. Huang, D.M. Han, P.A. Song, W.Y. Tang, J.S. Bao, R.R. Li, Y.L. Liu, Compos. Part A Appl. Sci. Manuf. 86 (2016) 9-18.
DOI URL |
| [125] |
T. Sai, S.Y. Ran, Z. Guo, H. Yan, Y. Zhang, H. Wang, P.A. Song, Z.P. Fang, Chem. Eng. J. 409 (2021) 128223.
DOI URL |
| [126] |
Y. Zhang, J. Jing, T. Liu, L.D. Xi, T. Sai, S.Y. Ran, Z.P. Fang, S.Q. Huo, P.A. Song, Chem. Eng. J. 411 (2021) 128493.
DOI URL |
| [1] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
| [2] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
| [3] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
| [4] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [5] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [6] | Tingting Tang, Shanchi Wang, Yue Jiang, Zhiguang Xu, Yu Chen, Tianshu Peng, Fawad Khan, Jiabing Feng, Pingan Song, Yan Zhao. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 66-75. |
| [7] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
| [8] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
| [9] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
| [10] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [11] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
| [12] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [13] | Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 101-108. |
| [14] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
| [15] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
