J. Mater. Sci. Technol. ›› 2022, Vol. 121: 1-8.DOI: 10.1016/j.jmst.2021.12.050
• Research Article • Next Articles
Yao Guoa, Leilei Zhanga,*(), Qiang Songa, Ruonan Zhanga, Fei Zhaoa, Wei Lia, Hongchao Shengb, Xianghui Houc, Hejun Lia
Received:
2021-10-09
Revised:
2021-12-03
Accepted:
2021-12-13
Published:
2022-09-10
Online:
2022-03-12
Contact:
Leilei Zhang
About author:
*E-mail address: zhangleilei@nwpu.edu.cn (L. Zhang).Yao Guo, Leilei Zhang, Qiang Song, Ruonan Zhang, Fei Zhao, Wei Li, Hongchao Sheng, Xianghui Hou, Hejun Li. Simultaneously enhancing mechanical and tribological properties of carbon fiber composites by grafting SiC hexagonal nanopyramids for brake disk application[J]. J. Mater. Sci. Technol., 2022, 121: 1-8.
Fig. 2. (a) XRD pattern and (b, c) SEM images of SiCNPs grafted CFP, (d) enlarged SEM image, (e) TEM and EDS mapping images, (f) HRTEM and SAED images of SiCNPs.
Fig. 3. (a) Schematic of the structure change of PyC matrix with the different deposition times, (b, c) TEM and EDS mapping images of SiCNPs deposited with PyC, (d) SEM and (e) PLM images of SiCNPs-C/C composites.
Fig. 5. (a) Interlaminar shearing, (b) out-of-plane compressive, and (c) in-plane compressive stress-strain curves of C/C and SiCNPs-C/C composites, (d, e) SEM images of fracture surfaces of SiCNPs-C/C composites, (f) mechanical strengths of CNTs/SiCNWs-reinforced C/C composites reported in the literature.
Fig. 6. (a) Schematic of the reinforcing mechanism of radially grafted SiCNPs for C/C composites; (b, d, f, and h) four schematic of enhancement areas; (c, e, g, and i) corresponding SEM images of fractured SiCNPs-C/C composites.
Fig. 7. (a) Schematic of friction test, (b) dynamical friction coefficient, and (c) average friction coefficient and wear rate of C/C and SiCNPs-C/C composites under dry sliding, (d, e) SEM images of SiCNPs-C/C composites after wear, (f) 3D surface images of the wear position of SiCNPs-C/C composites.
[1] |
L. Feng, Q.G. Fu, Q. Song, Y.L. Yang, Y. Zuo, G.Q. Suo, X.J. Hou, L. Zhang, X.H. Ye, Carbon 157 (2020) 640-648.
DOI URL |
[2] |
H.L. Deng, K.Z. Li, H.J. Li, P.Y. Wang, J. Xie, L.L. Zhang, Wear 270 (2010) 95-103.
DOI URL |
[3] | Q.G. Fu, P. Zhang, L. Zhuang, L. Zhou, J.P. Zhang, J. Wang, X.H. Hou, R. Riedel, H.J. Li, J. Mater. Sci. Technol. 95 (2022) 31-68. |
[4] |
M. Bevilacqua, A. Babutskyi, A. Chrysanthou, Carbon 95 (2015) 861-869.
DOI URL |
[5] |
S.W. Fan, X. Ma, Z. Li, J. Hu, Z. Xie, J.L. Deng, L.T. Zhang, L.F. Cheng, Ceram. Int. 44 (2018) 175-182.
DOI URL |
[6] |
M. Ahmada, S.R.P. Silva, Carbon 158 (2020) 24-44.
DOI URL |
[7] | X.X. Zhou, Y. Wang, C.C. Gong, B. Liu, G. Wei, Chem. Eng. J. 402 (2020) |
[8] |
P. Lv, Y.Y. Feng, P. Zhang, H.M. Chen, N.Q. Zhao, W. Feng, Carbon 49 (2011) 4665-4673.
DOI URL |
[9] |
C. Wang, Y.B. Li, L.Y. Tong, Q. Song, K.Z. Li, J.J. Li, Q.Y. Peng, X.D. He, R.G. Wang, W.C. Jiao, S.Y. Du, Carbon 69 (2014) 239-246.
DOI URL |
[10] |
T. Kamae, L.T. Drzal, Compos. Part A Appl. Sci. Manuf. 43 (2012) 1569-1577.
DOI URL |
[11] |
Q.X. Li, J.S. Church, M. Naebe, B.L. Fox, Carbon 109 (2016) 74-86.
DOI URL |
[12] |
J. Wang, X.M. Zhang, Y.L. Miao, Y.Y. Li, X.F. Xi, X.Q. Zhong, X.L. Pei, L. He, Q Huang, Carbon 129 (2018) 409-414.
DOI URL |
[13] | G. Kou, L.J. Guo, H.J. Li, N.K. Liu, W. Li, H. Shen, L.J. Bai, Compos. Part. B Eng. 174 (2019) |
[14] |
M.S. Islam, Y. Deng, L.Y. Tong, S.N. Faisal, A.K. Roy, A.I. Minett, V.G. Gomes, Carbon 96 (2016) 701-710.
DOI URL |
[15] |
R. Li, N. Lachman, P. Florin, H.D. Wagner, B.L. Wardle, Compos. Sci. Technol. 117 (2015) 139-145.
DOI URL |
[16] |
Z.Q. Yao, C.G. Wang, J.J. Qin, S.S. Su, Y.X. Wang, Q.F. Wang, M.J. Yu, H.Z. Wei, Carbon 164 (2020) 133-142.
DOI URL |
[17] | L.Y. Han, Q. Song, J.J. Sun, K.Z. Li, Y.F. Lu, Compos. Part B Eng. 187 (2020) |
[18] |
C. Wang, L. Xia, B. Zhong, H. Yang, L.N. Huang, L. Xiong, X.X. Huang, G.W. Wen, J. Eur. Ceram. Soc. 39 (2019) 4625-4633.
DOI URL |
[19] |
W.S. Yang, G.Q. Chen, J. Qiao, Q. Zhang, R.H. Dong, G.H. Wu, Mater. Sci. Eng. A 689 (2017) 189-194.
DOI URL |
[20] | T.Y. Wang, Q. Song, S.Y. Zhang, K. Li, C.X. Xiao, H.J. Lin, Q.L. Shen, H.J. Li, Com-pos. Part A Appl. Sci. Manuf. 145 (2021) |
[21] |
R.B. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Prog. Mater. Sci. 72 (2015) 1-60.
DOI URL |
[22] | B.B. Li, B.X. Mao, X.B. Wang, T. He, Surf. Coat. Technol. 389 (2020) |
[23] |
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287 (2000) 637-640.
URL PMID |
[24] | S. Perisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, S.T. Purcell, Phys. Rev. B 77 (2008) |
[25] |
X.F. Lu, P. Xiao, Carbon 59 (2013) 176-183.
DOI URL |
[26] |
Q.L. Shen, H.J. Li, H.J. Lin, L. Li, W. Li, Q. Song, J. Mater. Chem. C 6 (2018) 5888-5899.
DOI URL |
[27] | H.J. Lin, H.J. Li, Q.L. Shen, X.H. Shi, T. Feng, L.J. Guo, Nanomaterials 8 (2018) |
[28] |
J. Li, J.J. Sha, J.X. Dai, Z.Z. Lv, J.Q. Shao, S.H. Wang, Z.F. Zhang, Carbon 118 (2017) 148-155.
DOI URL |
[29] |
Q.G. Fu, L. Wang, X.F. Tian, Q.L. Shen, Compos. Part B Eng. 164 (2019) 620-628.
DOI URL |
[30] |
J. Chen, P. Xiao, X. Xiong, Mater. Des. 84 (2015) 285-290.
DOI URL |
[31] |
Q. Song, Q.L. Shen, Q.G. Fu, H.J. Li, J. Mater. Sci. Technol. 35 (2019) 2799-2808.
DOI URL |
[32] |
Q. Song, K.Z. Li, H.L. Li, H.J. Li, C. Ren, Carbon 50 (2012) 3949-3952.
DOI URL |
[33] |
L. Feng, K.Z. Li, B. Xue, Q.G. Fu, L.L. Zhang, Mater. Des. 113 (2017) 9-16.
DOI URL |
[34] | J. Pu, L.J. Guo, Q. Song, X.M. Zhang, B. Liu, Q.H. Zeng, Y.Y. Li, X.M. Yin, N.N. Yan, J.C. Meng, H.J. Li, Compos. Part B Eng. 202 (2020) |
[35] |
Y.H. Chu, H.J. Li, Q.G. Fu, L.H. Qi, L. Li, Corros. Sci. 70 (2013) 11-16.
DOI URL |
[36] |
Y. Guo, L.L. Zhang, H.J. Li, S. He, X.F. Tian, H.C Sheng, Q. Song, Ceram. Int. 44 (2018) 11448-11455.
DOI URL |
[37] | M.A. Meyers, K.K. Chawla, in:Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009, pp. 525-553. |
[38] |
Y.Q. Chen, X.N. Zhang, Z.P. Xie, ACS Nano 9 (2015) 8054-8063.
DOI URL |
[39] |
X.M. Yin, H.J. Li, R.M. Yuan, J.H. Lu, J. Mater. Sci. Technol. 81 (2021) 162-174.
DOI URL |
[40] |
D. Lu, L. Su, H.J. Wang, M. Niu, L. Xu, M.B. Ma, H.F. Gao, Z.X. Cai, X.Y. Fan, ACS Appl. Mater. Interfaces 11 (2019) 45338-45344.
DOI URL |
[41] |
J. Zhao, Z.J. Li, X.C. Yuan, T. Shen, L.G. Lin, M. Zhang, A. Meng, Q.D. Li, Chem. Eng. J. 357 (2019) 21-32.
DOI URL |
[42] |
M. Guellali, R. Oberacker, M.J. Hoffmann, Carbon 43 (2005) 1954-1960.
DOI URL |
[43] | T.Y. Wang, H.J. L, Q.L. Shen, K. Li, W. Li, Q. Song, S.Y. Zhang, Compos. Part B Eng. 192 (2020) |
[44] |
Y.Q Liu, L.L. He, X.F. Lu, P. Xiao, Carbon 50 (2012) 2424-2430.
DOI URL |
[45] |
L. Feng, K.Z. Li, Z.S. Si, Q. Song, H.J. Li, J.H. Lu, L.J. Guo, Mater. Sci. Eng. A 626 (2015) 449-457.
DOI URL |
[1] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
[2] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[3] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[4] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[5] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[6] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[7] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[8] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[9] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[10] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[11] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[12] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[13] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[14] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[15] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||