J. Mater. Sci. Technol. ›› 2022, Vol. 121: 9-18.DOI: 10.1016/j.jmst.2021.12.046
• Research Article • Previous Articles Next Articles
Qianqian Fua,b, Bing Lia,c,*(), Minqiang Gaoa,c, Ying Fua,d, Rongzhou Yua,c,*(
), Changfeng Wanga,c, Renguo Guana,c
Received:
2021-11-02
Revised:
2021-12-21
Accepted:
2021-12-23
Published:
2022-09-10
Online:
2022-03-11
Contact:
Bing Li,Rongzhou Yu
About author:
fuying@sslab.org.cn (Y. Fu).Qianqian Fu, Bing Li, Minqiang Gao, Ying Fu, Rongzhou Yu, Changfeng Wang, Renguo Guan. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion[J]. J. Mater. Sci. Technol., 2022, 121: 9-18.
alloy | Cu (wt.%) | Te (wt.%) | P (wt.%) |
---|---|---|---|
Cu-Te | Bal. | 0.55 | 0.00471 |
Table 1. Compositions of the Cu-Te alloy.
alloy | Cu (wt.%) | Te (wt.%) | P (wt.%) |
---|---|---|---|
Cu-Te | Bal. | 0.55 | 0.00471 |
Fig. 2. Axial orientation SEM images of (a) billet and (b) extruded Cu-Te alloy and radial orientation SEM images of (c) billet and (d) extruded Cu-Te alloy.
Fig. 5. EBSD results of extruded alloy: (a) axial orientation inverse pole figures, (b) radial orientation inverse pole figures, (c) statistical result of the grain size, and (d) distributions of misorientation angles.
Fig. 6. The recrystallized, substructured, deformed regions, and proportional statistics of the extruded alloy: (a) and (c) axial orientation; (b) and (d) radial orientation.
Fig. 7. (a) TEM BF image of extruded Cu matrix; (b) nano-twins in Cu-Te alloy by continuous extrusion; the SAED patterns of (c) Cu matrix and (d) nano-twins; (e) high-resolution TEM of twins.
Alloy | f (%) | d (μm) | ρ (× 1014 m-2) | σLAGB (MPa) | σHAGB (MPa) |
---|---|---|---|---|---|
Billet | 97.1 | 9.44 | 0.0174 | 11.3 | 35.9 |
Extruded | 51.1 | 1.16 | 0.203 | 38.6 | 74.3 |
Table 2. Yield strength increments caused by LAGBs and HAGBs of the Cu-Te alloy.
Alloy | f (%) | d (μm) | ρ (× 1014 m-2) | σLAGB (MPa) | σHAGB (MPa) |
---|---|---|---|---|---|
Billet | 97.1 | 9.44 | 0.0174 | 11.3 | 35.9 |
Extruded | 51.1 | 1.16 | 0.203 | 38.6 | 74.3 |
[1] |
L. Chen, X. Huang, H. Zhang, Y. Luo, Energies 11 (6) (2018) 1-16.
DOI URL |
[2] |
Z. Yang, M. Tang, Environ. Resour. Econ. 74 (2) (2019) 911-937.
DOI URL |
[3] |
M. Buggy, C. Conlon, J. Mater. Process. Tech. 153-154 (2004) 213-218.
DOI URL |
[4] | Y. Geng, Y. Ban, B. Wang, X. Li, K. Song, Y. Zhang, Y. Jia, B. Tian, Y. Liu, A.A. Volinsky, J.Mater.Res.Technol 9 (5) (2020) 11918-11934. |
[5] |
D.C. Zhu, K. Tang, M.Z. Song, M.J. Tu, Trans. Nonferrous Met. Soc. China. 16 (2) (2006) 459-462.
DOI URL |
[6] |
C.M. Kowalchuk, H. Rösner, D. Fenske, Y. Huang, J.F. Corrigan, Can J. Chem. 84 (2) (2006) 196-204.
DOI URL |
[7] | Y. Sakurakawa, A. Uruno, M. Kobayashi, J. Vac. Sci. Technol. B 35 (4) (2017) 1-5. |
[8] |
S Kuyucak, M Sahoo, Can. Metall. Quart. 35 (1) (1996) 1-15.
DOI URL |
[9] |
R. Huang, L. Jiao, M. Li, D. Zhu, Oxid. Met. 89 (1-2) (2017) 141-149.
DOI URL |
[10] | A S Pashinkin, L M Pavlova, J. Inorg. Mater. 41 (9) (2005) 939-944. |
[11] |
G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A 382 (1-2) (2004) 30-34.
DOI URL |
[12] |
Y. Zhao, B. Song, Z. Yan, X. Zhang, J. Pei, J. Mater. Process. Tech. 235 (2016) 149-157.
DOI URL |
[13] | L. Guo, J. Wang, X. Yun, Z. Chen, Mater. Sci. Eng. A 802 (2021) |
[14] | X.B. Yun, X. Chen, Y. Zhao, et al., Materials Science Forum. Trans Tech Publica-tions (2012) 196-202. |
[15] | Z. Shen, Z. Lin, P. Shi, G. Tang, T. Zheng, C. Liu, Y. Guo, Y. Zhong, Mater. Sci. Eng. A 820 (2021) |
[16] | P.H. Hu, H.W. Song, S.-W. Wang, Y. Chen, S.-H. Zhang, Mater. Sci. Eng. A 819 (2021) |
[17] |
R. Lu, S. Zheng, J. Teng, J. Hu, D. Fu, J. Chen, G. Zhao, F. Jiang, H. Zhang, J. Mater. Sci. Technol. 80 (2021) 150-162.
DOI URL |
[18] |
F.J. Humphreys, J. Mater. Sci. 36 (16) (2001) 3833-3854.
DOI URL |
[19] | K. Huang, R.E. Logé, Mater. Design. 111 (2016) 548-574. |
[20] |
Y.F. Shen, R.G. Guan, Z.Y. Zhao, R.D.K. Misra, Acta Mater 100 (2015) 247-255.
DOI URL |
[21] |
R Blachnik, M Lasocka, U Walbrecht, J Solid State Chem 48 (3) (1983) 431-438.
DOI URL |
[22] | R.W. Shao, S.L. Chen, Z.P. Dou, J.M. Zhang, X.M. Ma, R. Zhu, J. Xu, P. Gao, D.P. Yu, Nano Lett 8b 03154 (2018). |
[23] | F.J. Humphreys, M Hatherly, Elsevier, 2004. |
[24] | S.M. Hua, P.Z. Zhang, Z.L Liu, J.Plast. Eng. 28 (10) (2021) 27-35. |
[25] |
D.N. Lee, Scripta Metal. Mater. 32 (10) (1995) 1689-1694.
DOI URL |
[26] | Y.B Wang, B Wu, M.L Sui, Appl. Phys. Lett 93 (041906) (2008) 1-3. |
[27] |
H. Feng, H.C. Jiang, D.S Yan, L.J Rong, Mater. Sci. Eng. A 582 (2013) 219-224.
DOI URL |
[28] | J.R. Porter, F.J. Humphreys, Met. Sci. 13 (2) (1979) 83-88. |
[29] |
C. Schwarze, R. Darvishi Kamachali, I. Steinbach, Acta Mater 106 (2016) 59-65.
DOI URL |
[30] |
P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66 (10) (2012) 785-788.
DOI URL |
[31] |
J. Gubicza, N.Q. Chinh, Gy. KraÍlics, I. Schiller, T. Ungaŕ, Curr. Appl. Phys. 6 (2006) 194-199.
DOI URL |
[32] |
G.L. Xie, Q.S. Wang, X.J. Mi, B.Q. Xiong, L.J. Peng, Mater. Sci. Eng. A 558 (2012) 326-330.
DOI URL |
[33] |
N. Hansen, Mater. Sci. Eng. A 409 (1-2) (2005) 39-45.
DOI URL |
[34] |
Y. Wu, Y. Li, J. Lu, S. Tan, F. Jiang, J. Sun, Mater. Sci. Eng. A 731 (2018) 403-412.
DOI URL |
[35] |
Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater 52 (15) (2004) 4589-4599.
DOI URL |
[36] |
M. Ma, Z. Li, W. Qiu, Z. Xiao, Z. Zhao, Y. Jiang, J. Alloy. Compd. 788 (2019) 50-60.
DOI URL |
[37] | P.F. Sun, P.L. Zhang, J.P. Hou, Q. Wang, Z.F. Zhang, J. Alloy. Compd. 863 (2021) |
[38] |
J.R. Bowen, P.B. Prangnell, D. Juul Jensen, N. Hansen, Mater. Sci. Eng. A 387-389 (2004) 235-239.
DOI URL |
[39] |
L. Qian, Scr. Mater. 50 (11) (2004) 1407-1411.
DOI URL |
[40] | Y. Li, C. Liu, P. Li, T. Lu, C. Chen, Z. Guo, Y. Su, L. Qiao, J. Zhou, Y. Bai, Adv. Funct. Mater. 30 (36) (2020) 1-10. |
[41] | R. Rajkumar, A.S. Alagar Nedunchezhian, D. Sidharth, P. Rajasekaran, M. Arivanandhan, R. Jayavel, G. Anbalagan, J. Alloy. Compd. 835 (2020) |
[1] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[2] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[3] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[6] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[7] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[8] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[9] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[10] | Zhiquan Wang, Chun Li, Ragnar Kiebach, Ilaria Ritucci, Ming Chen, Jian Cao. Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze [J]. J. Mater. Sci. Technol., 2022, 121(0): 174-180. |
[11] | Yao Guo, Leilei Zhang, Qiang Song, Ruonan Zhang, Fei Zhao, Wei Li, Hongchao Sheng, Xianghui Hou, Hejun Li. Simultaneously enhancing mechanical and tribological properties of carbon fiber composites by grafting SiC hexagonal nanopyramids for brake disk application [J]. J. Mater. Sci. Technol., 2022, 121(0): 1-8. |
[12] | Bingqian Jin, Nannan Zhang, Shuo Yin. Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting [J]. J. Mater. Sci. Technol., 2022, 121(0): 163-173. |
[13] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[14] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[15] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||