J. Mater. Sci. Technol. ›› 2022, Vol. 121: 163-173.DOI: 10.1016/j.jmst.2021.12.055
• Research Article • Previous Articles Next Articles
Bingqian Jina, Nannan Zhanga,*(), Shuo Yinb,*(
)
Received:
2021-10-04
Revised:
2021-11-30
Accepted:
2021-12-19
Published:
2022-09-10
Online:
2022-03-16
Contact:
Nannan Zhang,Shuo Yin
About author:
*E-mail addresses: zhangnn@sut.edu.cn (N. Zhang),Bingqian Jin, Nannan Zhang, Shuo Yin. Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting[J]. J. Mater. Sci. Technol., 2022, 121: 163-173.
C | Mn | Si | S | P | Fe |
---|---|---|---|---|---|
0.17 | 1.4 | 0.35 | 0.035 | 0.035 | Bal. |
Table 1. Chemical composition of Q235 steel (wt. %).
C | Mn | Si | S | P | Fe |
---|---|---|---|---|---|
0.17 | 1.4 | 0.35 | 0.035 | 0.035 | Bal. |
Fig. 4. Cross-sectional images of the as-remelted AlCoCrFeNi(TiN)x HEA coatings. (a) x=0, (b) x=0.2, (c) x=0.4, (d) x=0.6, (e) x=0.8, (f) x=1.0, (g) element distribution in (f).
Fig. 7. Microstructure and phase distribution resulting from TEM of the AlCoCrFeNi(TiN)0.4 HEA remelting layer. (a-d) TEM-DF images of the sample, and (e, f) EBSD images of the sample.
Point | Al | Co | Cr | Fe | Ni | Ti | N | O |
---|---|---|---|---|---|---|---|---|
1 | 37.72 | 0.57 | 0.77 | 0.62 | 0.66 | 0.39 | 8.44 | 50.83 |
2 | 0.22 | 0.26 | 1.2 | 0.3 | 0.04 | 50.78 | 47.2 | 0 |
3 | 29.3 | 16.54 | 8.13 | 16.98 | 27.24 | 1.27 | 0.54 | 0 |
4 | 3.91 | 24.97 | 32.85 | 31.65 | 6.27 | 0.25 | 0.13 | 0 |
Table 2. Chemical composition (at.%) of the points selected from Fig. 7 (b-d).
Point | Al | Co | Cr | Fe | Ni | Ti | N | O |
---|---|---|---|---|---|---|---|---|
1 | 37.72 | 0.57 | 0.77 | 0.62 | 0.66 | 0.39 | 8.44 | 50.83 |
2 | 0.22 | 0.26 | 1.2 | 0.3 | 0.04 | 50.78 | 47.2 | 0 |
3 | 29.3 | 16.54 | 8.13 | 16.98 | 27.24 | 1.27 | 0.54 | 0 |
4 | 3.91 | 24.97 | 32.85 | 31.65 | 6.27 | 0.25 | 0.13 | 0 |
Fig. 8. TEM images and element distribution of the AlCoCrFeNi(TiN)0.4 HEA remelting layer. (a), (b) TEM-DF image of the sample, (c) TEM-EDS elemental mappings of TiN-Al2O3 and (d) TEM-EDS elemental mappings of B2 phase and matrix.
Fig. 11. Microstructure of B2 phase in the AlCoCrFeNi(TiN)x HEA coatings. (a) TEM-DF image of x=0.2, (b) TEM-DF image of x=0.4, (c) TEM-DF image of x=0.6, (d) TEM-DF image of x=0.8, (e) TEM-DF image of x=1.0 and (f) selected-area electron diffraction of B2 phase and matrix.
Fig. 13. Schmid factor diagrams and value distributions of the AlCoCrFeNi(TiN)x HEA coatings characterised by EBSD. (a) x= 0, (b) x = 0.2, (c) x=0.4, (d) x= 0.6, (e) x= 0.8 and (f) x= 1.0.
Fig. 15. Coefficient of friction curves and worn surface morphologies of the AlCoCrFeNi(TiN)x HEA coatings. (a) x= 0, (b) x = 0.2, (c) x=0.4, (d) x= 0.6, (e) x= 0.8 and (f) x= 1.0.
Fig. 17. 3D-Morphology of the worn surface of the AlCoCrFeNi(TiN)x HEA coatings. (a) x= 0, (b) x = 0.2, (c) x=0.4, (d) x= 0.6, (e) x= 0.8 and (f) x= 1.0.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] | D.B. Muracle, O.N. Senkov, Acta Mater. 122 (2017) 488-511. |
[3] | W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater Sci. 118 (2021) |
[4] |
S. Yin, W.Y. Li, B. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, R. Lupoi, J. Mater. Sci. Technol. 35 (2019) 1003-1007.
DOI URL |
[5] | T. Richter, D. Schroepfer, M. Rhode, A. Boerner, R.S. Neumann, M Schneider, G. Laplanche, Mater. Chem. Phys. 275 (2022) |
[6] |
F. Findik, Mater. Des. 57 (2014) 218-244.
DOI URL |
[7] |
J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, D.M. Fabijanic, Scr. Mater. 186 (2020) 230-235.
DOI URL |
[8] | K. Treutler, S. Lorenz, V. Wesling, Materials 14 (2021) |
[9] |
C. Huang, Y. Zhang, R. Vilar, J. Shen, Mater. Des. 41 (2012) 338-343.
DOI URL |
[10] |
J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, Wear 261 (2006) 513-519.
DOI URL |
[11] |
B.Q. Jin, N.N. Zhang, S. Guan, Y. Zhang, D.Y. Li, Surf. Coat. Technol. 349 (2018) 867-873.
DOI URL |
[12] |
Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, W. Liu, J. Mater. Sci. Technol. 32 (2016) 470-476.
DOI URL |
[13] | Y.H. Fang, N. Chen, Du G.P, M.X. Zhang, X.R. Zhao, H. Cheng, J.B. Wu, J. Alloy. Compd. 815 (2020) |
[14] | Z.S. Wang, J. Xiong, Z.X. Guo, T.E. Yang, J.B. Liu, B.B. Chai, Mater. Sci. Eng. A 766 (2019) |
[15] | A.G. de la Obra, M.J. Sayagues, E. Chicardi, F.J. Gotor, J. Alloy. Compd. 814 (2020) |
[16] | Y.J. Guo, C.G. Li, M. Zeng, J.Q. Wang, P.R. Deng, Y. Wang, Mater. Chem. Phys. 242 (2020) |
[17] |
Y.X. Guo, X.J. Shang, Q.B. Liu, Surf. Coat. Technol. 344 (2018) 353-358.
DOI URL |
[18] |
J.B. Cheng, D. Liu, X.B. Liang, Y.X. Chen, Surf. Coat. Technol. 281 (2015) 109-116.
DOI URL |
[19] | L.Q. Wang, F.Y. Zhang, S. Yan, G.X. Yu, J.W. Chen, J.N. He, F.X. Yin, J. Alloy. Compd. 872 (2021) |
[20] | A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R.S. Kottada, C.C. Berndt, A.S.M. Ang, J. Alloy. Compd. 854 (2021) |
[21] |
K.C. Cheng, J.H. Chen, S. Stadler, S.H. Chen, Appl. Surf. Sci. 478 (2019) 478-486.
DOI URL |
[22] |
J.B. Gao, Y.T. Jin, Y.Q. Fan, D.K. Xu, L. Meng, C. Wang, Y.P Yu, D.L. Zhang, F.H. Wang, J. Mater. Sci. Technol. 102 (2022) 159-165.
DOI URL |
[23] |
P. Chen, S. Li, Y.H. Zhou, Mi. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 40-43.
DOI URL |
[24] |
Y.K. Kim, M.C. Kim, K.A. Lee, J. Mater. Sci. Technol. 97 (2022) 10-19.
DOI URL |
[25] | X.Y. Gao, Z.J. Yu, W.H. Hu, Y. Lu, Z.Y. Zhu, Y. Ji, Y.Z. Lu, Z.X. Qin, X. Lu, J. Alloy. Compd. 847 (2020) |
[26] | P. Chen, C. Yang, S. Li, M.M. Attallah, M. Yan, Mater. Des. 194 (2020) |
[27] | C.M. Wang, J.X. Yu, Y. Zhang, Y. Yu, Mater. Des. 182 (2019) |
[28] | J.K. Xiao, Y.Q. Wu, J. Chen, C. Zhang, Wear 448 (2020) |
[29] | W.B. Liao, Z.X. Wu, W.J. Lu, M.J. He, T. Wang, Z.X. Guo, J.J. Huang, Intermetallics 132 (2021) |
[30] | A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, A.S.M. Ang, Appl. Surf. Sci. 505 (2020) |
[31] | L.Q. Wang, F.Y. Zhang, S. Yan, G.X. Yu, J.W. Chen, J.N. He, F.X. Yin, J. Alloy. Compd. 872 (2021) |
[32] |
K. Yang, J.Q. Li, Q.Y. Wang, Z.Y. Li, Y.F. Jiang, Y.F. Bao, Wear 426-427 (2019) 314-318.
DOI URL |
[33] | J.C. Zhang, T.W. Huang, Z.L. Shen, H.J. Su, J. Zhang, L. Liu, Mater. Lett. 304 (2021) |
[34] |
T.Y. Han, Y. Liu, M.Q. Liao, D.N. Yang, N. Qu, Z.H. Lai, J.C. Zhu, J. Mater. Sci. Technol. 99 (2021) 18-27.
DOI URL |
[35] | A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Mater. Trans. 12 (2005) 2817-2829. |
[36] | K.F. Kelton, A.L. Greer, Mater. Ser. 15 (2010) 165-226. |
[37] |
W. Liang, R. Wu, Q. Yuan, J. Hu, Trans. Indian Inst. Met. 73 (2020) 151-159.
DOI URL |
[38] |
A. Takeuchi, A. Inoue, Mater. Trans. JIM 41 (2000) 1372-1378.
DOI URL |
[39] | A. Takeuchi, A. Inoue, Mater. Sci. Eng. A 304 (2001) 446-451. |
[40] |
L.X. Xi, D.D. Gu, S. Guang, R.Q. Wang, K. Ding, K.G. Prashanth, J. Mater. Res. Technol. 9 (2020) 2611-2622.
DOI URL |
[41] |
B. Li, L. Zhang, B. Yang, Compos. Commun. 19 (2020) 56-60.
DOI URL |
[42] |
B. Li, B. Qian, Y. Xu, Z.Y. Liu, F.Z. Xuan, Mater. Lett. 252 (2019) 88-91.
DOI URL |
[43] | Y.L. Wang, L. Zhao, D. Wan, S. Guan, C.K. Chan, Mater. Sci. Eng. A 825 (2021) |
[44] |
Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Acta Mater. 147 (2018) 213-225.
DOI URL |
[45] |
Q. Wang, Y. Ma, B.B. Jiang, X.N. Li, Y. Shi, C. Dong, P.K. Liaw, Scr. Mater. 120 (2016) 85-89.
DOI URL |
[46] |
J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, Acta Mater. 197 (2020) 10-19.
DOI URL |
[47] | Y. Ma, B.B. Jiang, C.L. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L.X. Sun, Metals 7 (2017) |
[48] | Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. Xin, J. Han, Appl. Surf. Sci. 543 (2021) |
[49] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[50] |
M.N. Gussev, K.G. Field, J.T. Busby, J. Nucl. Mater. 460 (2015) 139-152.
DOI URL |
[51] | S.S. Zhu, Y.Q. Yu, B.S. Zhang, Z.J. Zhang, X. Yan, Z.Z. Wang, Mater. Lett. 272 (2020) |
[52] |
H. Liu, J. L, P.J. Chen, H.F. Yang, Opt. Laser Technol. 118 (2019) 140-150.
DOI URL |
[53] | B.W. Zheng, F.Y. Dong, X.G. Yuan, H.J. Huang, Y. Zhang, X.J. Zuo, L.S. Luo, L. Wang, Y.Q. Su, W.D. Li, P.K. Liaw, X. Wang, Tribol. Int. 145 (2020) |
[54] |
L. Rogal, D. Kalita, L.L. Dobrzynska, Intermetallics 86 (2017) 104-109.
DOI URL |
[55] |
R. Casati, M. Vedani, Metals 4 (2014) 65-83.
DOI URL |
[1] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[2] | Xudong Qi, Kai Li, Enwei Sun, Bingqian Song, Da Huo, Jiaming Li, Xianjie Wang, Rui Zhang, Bin Yang, Wenwu Cao. Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 104(0): 119-126. |
[3] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[4] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[5] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[6] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[7] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[8] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[9] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
[10] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[11] | Wei Fan, Yu Bai, Yanfen Liu, Taotao Li, Binmao Li, Lei Zhang, Chenmin Gao, Shiyu Shan, Haocen Han. Principal element design of pyrochlore-fluorite dual-phase medium- and high-entropy ceramics [J]. J. Mater. Sci. Technol., 2022, 107(0): 149-154. |
[12] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[13] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[14] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[15] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||