J. Mater. Sci. Technol. ›› 2022, Vol. 121: 19-27.DOI: 10.1016/j.jmst.2021.12.051
• Research Article • Previous Articles Next Articles
Yuxiao Chena, Wei Zhonga, Feng Chena, Ping Wanga, Jiajie Fanc, Huogen Yua,b,*()
Received:
2021-10-15
Revised:
2021-12-03
Accepted:
2021-12-04
Published:
2022-09-10
Online:
2022-03-12
Contact:
Huogen Yu
About author:
*School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China. E-mail address: huogenyu@163.com (H. Yu).Yuxiao Chen, Wei Zhong, Feng Chen, Ping Wang, Jiajie Fan, Huogen Yu. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance[J]. J. Mater. Sci. Technol., 2022, 121: 19-27.
Fig. 1. The photocorrosion of CdS photocatalyst: (a) The conventional photocorrosion mechanism; (b) The conventional photocorrosion resistance in Na2S-Na2SO3 system; (c) Actual photocorrosion progress in Na2S-Na2SO3 system.
Fig. 2. (A) The possible oxidation and reduction reaction routes on the CdS surface in Na2S-Na2SO3 solution and (B) the self-reduction production of metallic Cd nanoparticles; (C, D) XRD patterns of (a) CdS, (b) CdS-S-1h and (c) CdS-S-8h.
Fig. 7. (A) TEM image, (B) HRTEM image, (C) HAADF-STEM and EDS-mapping images and (D, E) Line-scan EELS data of CdS-L-8h. (F) The possible oxidation and reduction reaction routes on the CdS surface in lactic acid solution and (G) the self-reduction production of metallic Cd layer.
[1] | W. Yu, H.J. Fu, T. Mueller, B.S. Brunschwig, N.S. Lewis, J. Chem. Phys. 153 (2020) |
[2] | C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) |
[3] |
F. Mei, Z. Li, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 41 (2020) 41-49.
DOI URL |
[4] |
Z. Wei, M. Xu, J. Liu, W. Guo, Z. Jiang, W. Shangguan, Chin. J. Catal. 41 (2020) 103-113.
DOI URL |
[5] | P. Kuang, Y. Wang, B. Zhu, F. Xia, C.W. Tung, J. Wu, H.M. Chen, J. Yu, Adv. Mater. 33 (2021) |
[6] |
D. Gao, R. Yuan, J. Fan, X. Hong, H. Yu, J. Mater. Sci. Technol. 56 (2020) 122-132.
DOI URL |
[7] |
P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[8] |
J. Liu, G. Hodes, J. Yan, S. Liu, Chin. J. Catal. 42 (2021) 205-216.
DOI URL |
[9] |
S. Zhang, S. Duan, G. Chen, S. Meng, X. Zheng, Y. Fan, X. Fu, S. Chen, Chin. J. Catal. 42 (2021) 193-204.
DOI URL |
[10] |
S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. B 243 (2019) 19-26.
DOI URL |
[11] |
Z. Liang, R. Shen, Y.H. Ng, P. Zhang, Q. Xiang, X. Li, J. Mater. Sci. Technol. 56 (2020) 89-121.
DOI URL |
[12] | W.Y. Lei, X. Pang, G.L. Ge, G. Liu, Nano Today 39 (2021) |
[13] |
F. Chen, H. Feng, W. Luo, P. Wang, H. Yu, J. Fan, Rare Metals 40 (2021) 3125-3134.
DOI URL |
[14] |
W. Yu, S. Zhang, J. Chen, P. Xia, M.H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A 6 (2018) 15668-15674.
DOI URL |
[15] | Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin. 37 (2021) |
[16] |
J. Liu, P. Wang, J. Fan, H. Yu, J. Yu, ACS Sustain. Chem. Eng. 9 (2021) 3828-3837.
DOI URL |
[17] |
J. Liu, P. Wang, J. Fan, H. Yu, J. Yu, Nano Res. 14 (2021) 1095-1102.
DOI URL |
[18] | P. Kuang, M. Sayed, J. Fan, B. Cheng, J. Yu, Adv. Energy. Mater. 10 (2020) |
[19] |
J. Xu, W. Zhong, H. Yu, X. Hong, J. Fan, J. Yu, J. Mater. Chem. C 8 (2020) 15816-15822.
DOI URL |
[20] | J. Peng, J. Shen, X. Yu, H. Tang, Q. Zulfiqar, Liu, Chin. J. Catal. 42 (2021) 87-96. |
[21] | F. Gao, R. Lei, X. Huang, J. Yuan, C. Jiang, W. Feng, L. Zhang, P. Liu, Appl. Catal. B 292 (2021) |
[22] |
R. Gao, B. Cheng, J. Fan, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 15-24.
DOI URL |
[23] | J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, M. Liu, Front. Phys. 15 (2020) |
[24] | Y. Chen, L. Li, Q. Xun, T. Düren, J. Fan, D. Ma, Acta Phys. Chim. Sin. 37 (2021) |
[25] | J. Fu, K. Liu, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, M. Liu, Adv. Sci. 6 (2019) |
[26] | P. Wang, H. Li, Y. Cao, H. Yu, Acta Phys. Chim. Sin. 37 (2021) |
[27] |
Q. Liu, J. Huang, H. Tang, X. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[28] | X. Zhou, I. Hwang, O. Tomanec, D. Fehn, A. Mazare, R. Zboril, K. Meyer, P. Schmuki, Adv. Funct. Mater. 31 (2021) |
[29] | D. Gao, X. Wu, P. Wang, H. Yu, B. Zhu, J. Fan, J. Yu, Chem. Eng. J. 408 (2021) |
[30] | J. Li, X. Wu, S. Liu, Acta Phys. Chim. Sin. 37 (2021) |
[31] | D. Gao, W. Zhong, Y. Liu, H. Yu, J. Fan, Appl. Catal. B 290 (2021) |
[32] |
S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, M. Cheng, R. Wang, X. Liu, R. Deng, J. Mater. Chem. A 8 (2020) 2286-2322.
DOI URL |
[33] |
M. Xiong, J. Yan, B. Chai, G. Fan, G. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
[34] | R.J. Feng, K.W. Wan, X.Y. Sui, N. Zhao, H.X. Li, W.Y. Lei, J.G. Yu, X.F. Liu, X.H. Shi, M.L. Zhai, G. Liu, H. Wang, L.R. Zheng, M.H. Liu, Nano Today 37 (2021) |
[35] |
S. Tang, Y. Xia, J. Fan, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 743-752.
DOI URL |
[36] |
B. Weng, M.Y. Qi, C. Han, Z.R. Tang, Y.J. Xu, ACS Catal. 9 (2019) 4642-4687.
DOI URL |
[37] | Y. Shi, X. Lei, L. Xia, Q. Wu, W. Yao, Chem. Eng. J. 393 (2020) |
[38] | X. Xiang, B. Zhu, B. Cheng, J. Yu, H. Lv, Small 16 (2020) |
[39] | H. Zhang, F. Yu, Y. Wang, L. Yin, J. Li, J. Huang, X. Kong, Q. Feng, Chem. Eng. J. 426 (2021) |
[40] |
W. Zhong, Y. Huang, X. Wang, J. Fan, H. Yu, Chem. Commun. 56 (2020) 9316-9319.
DOI URL |
[41] | W. Zhong, X. Wu, P. Wang, J. Fan, H. Yu, A.C.S. Sustain, Chem. Eng. 8 (2020) 543-551. |
[42] |
X. Ning, W. Zhen, Y. Wu, G. Lu, Appl. Catal. B 226 (2018) 373-383.
DOI URL |
[43] |
D. Ren, R. Shen, Z. Jiang, X. Lu, X. Li, Chin. J. Catal. 41 (2020) 31-40.
DOI URL |
[44] | B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal. B 288 (2021) |
[45] |
X. Ning, G. Lu, Nanoscale 12 (2020) 1213-1223.
DOI URL |
[46] | W. Zhong, X. Wu, Y. Liu, X. Wang, J. Fan, H. Yu, Appl. Catal. B 280 (2021) |
[47] |
Y. Zhao, Y. Lu, L. Chen, X. Wei, J. Zhu, Y. Zheng, ACS Appl. Mater. Interfaces 12 (2020) 46073-46083.
DOI URL |
[48] |
J.Y. Li, Y.H. Li, M.Y. Qi, Q. Lin, Z.R. Tang, Y.J. Xu, ACS Catal. 10 (2020) 6262-6280.
DOI URL |
[49] |
J. Sakizadeh, J.P. Cline, M.A. Snyder, C.J. Kiely, S. McIntosh, ACS Appl. Mater. Interfaces 12 (2020) 42773-42780.
DOI URL |
[50] |
Y. Zhang, W. Zhou, J. Wang, L. Jia, L. Liu, X. Tan, T. Yu, J. Ye, J. Colloid Interface Sci. 607 (2022) 769-781.
DOI URL |
[51] |
Q. Wang, J. Li, Y. Bai, J. Lian, H. Huang, Z. Li, Z. Lei, W. Shangguan, Green Chem. 16 (2014) 2728-2735.
DOI URL |
[52] |
J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Chin. J. Catal. 42 (2021) 78-86.
DOI URL |
[53] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[54] |
B. Wang, S. He, W. Feng, L. Zhang, X. Huang, K. Wang, S. Zhang, P. Liu, Appl. Catal. B 236 (2018) 233-239.
DOI URL |
[55] | X. Zhang, T. Liu, F. Zhao, N. Zhang, Y. Wang, Appl. Catal. B 298 (2021) |
[56] | Y. Lei, X. Wu, S. Li, J. Huang, K.H. Ng, Y. Lai, J. Clean. Prod. 322 (2021) |
[57] | L. Shang, B. Tong, H. Yu, G. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L. Wu, C. Tung, T. Zhang, Adv. Energy Mater. 6 (2016) |
[58] |
Z. Zhao, Y. Xing, H. Li, P. Feng, Z. Sun, Sci. Chin. Mater. 61 (2018) 851-860.
DOI URL |
[59] | X. Liu, Y. Zhao, X. Yang, Q. Liu, X. Yu, Y. Li, H. Tang, T. Zhang, Appl. Catal. B 275 (2020) |
[60] | Z. Jiang, Q. Chen, Q. Zheng, R. Shen, P. Zhang, X. Li, Acta Phys. Chim. Sin. 37 (2021) |
[61] |
X. Hong, X. Yu, L. Wang, Q. Liu, J. Sun, H. Tang, Inorg. Chem. 60 (2021) 12506-12516.
DOI URL |
[1] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[2] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[3] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[4] | Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites [J]. J. Mater. Sci. Technol., 2022, 102(0): 1-7. |
[5] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[6] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[7] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[8] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
[9] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
[10] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[11] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
[12] | Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 122(0): 231-242. |
[13] | Nan Li, Qiuhui Zhu, Guimei Liu, Qi Zhao, Haiqin Lv, Mingzhe Yuan, Qingguo Meng, Yingtang Zhou, Jingkun Xu, Chuanyi Wang. Modulation of photocatalytic activity of SrBi2Ta2O9 nanosheets in NO removal by tuning facets exposure [J]. J. Mater. Sci. Technol., 2022, 122(0): 91-100. |
[14] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
[15] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||