J. Mater. Sci. Technol. ›› 2022, Vol. 121: 28-39.DOI: 10.1016/j.jmst.2021.11.073
• Research Article • Previous Articles Next Articles
Guorong Wang1, Yongkang Quan1, Kaicheng Yang, Zhiliang Jin*()
Received:
2021-09-21
Revised:
2021-11-16
Accepted:
2021-11-28
Published:
2022-09-10
Online:
2022-03-07
Contact:
Zhiliang Jin
About author:
*E-mail address: zl-jin@nun.edu.cn (Z. Jin).1 These authors contributed equally to this work.
Guorong Wang, Yongkang Quan, Kaicheng Yang, Zhiliang Jin. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution[J]. J. Mater. Sci. Technol., 2022, 121: 28-39.
Fig. 1. (a, b) XRD patterns of CZS, Cu2S and 2%Cu2S/CZS, (c) XRD spectra of X%Cu2S/CZS (X=1, 2, 3 and 5) composite samples with different Cu2S content, (d) Comparison of XRD patterns of 2%Cu2S/CZS samples before and after hydrogen evolution.
Fig. 2. SEM image of (a, b) CZS, (c) Cu2S, (d) 2%Cu2S/CZS, (e) TEM image of CZS, (f, g) 2%Cu2S/CZS, (h) HRTEM image of the 2%Cu2S/CZS, (i) EDX spectrum of 2%Cu2S/CZS.
Samples | SBET (m2/g)a | Pore volume (cm3/g)b | Average pore size (nm)b |
---|---|---|---|
CZS | 22 | 0.088 | 15 |
Cu2S | 6 | 0.014 | 8 |
2%Cu2S/CZS | 18 | 0.080 | 16 |
Table 1. The SBET, pore volume and average pore size of CZS, Cu2S and 2%Cu2S/CZS.
Samples | SBET (m2/g)a | Pore volume (cm3/g)b | Average pore size (nm)b |
---|---|---|---|
CZS | 22 | 0.088 | 15 |
Cu2S | 6 | 0.014 | 8 |
2%Cu2S/CZS | 18 | 0.080 | 16 |
Fig. 5. (a) Hydrogen evolution performance of Cu2S, CZS and 2%Cu2S/CZS, (b) Hydrogen evolution performance of X%Cu2S/CZS (X=1, 2, 3 and 5) composite samples with different Cu2S content, (c) Stability test of 2%Cu2S/CZS composite sample, (d) Comparison of hydrogen evolution of 2%Cu2S/CZS composite catalyst under different sacrificial reagents, (e) AQE of 2%Cu2S/CZS, (f) SEM image of 2%Cu2S/CZS after hydrogen evolution.
Samples | lifetime, τ (ns) | Rel (%) | <τ> (ns) | χ2 |
---|---|---|---|---|
CZS | τ1=0.97 | A1=41.82 | 2.00 | 1.67 |
τ2=5.20 | A2=34.91 | |||
τ3=130.98 | A3=23.27 | |||
Cu2S | τ1=0.55 | A1=43.05 | 1.15 | 1.73 |
τ2=4.28 | A2=35.72 | |||
τ3=115.46 | A3=21.24 | |||
2%Cu2S/CZS | τ1=5.35 | A1=33.37 | 2.07 | 1.65 |
τ2=134.52 | A2=24.14 | |||
τ3=1.01 | A3=42.49 |
Table 2. Kinetic analysis of emission decay for samples.
Samples | lifetime, τ (ns) | Rel (%) | <τ> (ns) | χ2 |
---|---|---|---|---|
CZS | τ1=0.97 | A1=41.82 | 2.00 | 1.67 |
τ2=5.20 | A2=34.91 | |||
τ3=130.98 | A3=23.27 | |||
Cu2S | τ1=0.55 | A1=43.05 | 1.15 | 1.73 |
τ2=4.28 | A2=35.72 | |||
τ3=115.46 | A3=21.24 | |||
2%Cu2S/CZS | τ1=5.35 | A1=33.37 | 2.07 | 1.65 |
τ2=134.52 | A2=24.14 | |||
τ3=1.01 | A3=42.49 |
Fig. 8. (a, b) The Mot-Schottky curves of CZS and Cu2S, (c) the energy band distribution of the two semiconductors, (d-f) IT, EIS, LSV curve of CZS, Cu2S and 2%Cu2S/CZS.
[1] |
N. Tian, Y.H. Zhang, X.W. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T.R. Zhang, H.W. Huang, Nano Energy 38 (2017) 72-81.
DOI URL |
[2] |
S.H. Guo, X. H.Li, J.M. Zhu, T.T. Tong, B.Q. Wei, Small 12 (2016) 5692-5701.
DOI URL |
[3] | C.B. Bie, H.G. Yu, B. Cheng, W.K. Ho, J.J. Fan, J.G. Yu, Adv. Mater. 31 (2021) |
[4] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
DOI URL |
[5] | Y. Liu, X.Q. Hao, H.Q. Hu, Z.L. Jin, Acta Phys. Chim. Sin. 37 (2021) |
[6] | Z.H. Mei, G.H. Wang, S.D. Yan, J. Wang, Acta Phys. Chim. Sin. 37 (2021) |
[7] |
Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, J. Shen, J. Mater. Sci. Technol. 56 (2020) 196-205.
DOI URL |
[8] |
M.F. Zheng, I. Ghosh, B. König, X.C. Wang, ChemCatChem 11 (2019) 703-706.
DOI URL |
[9] |
M. Zheng, X.H. Cao, Y. Ding, T. Tian, J.Q. Lin, J. Catal. 363 (2018) 109-116.
DOI URL |
[10] |
P.F. Xia, S.W. Cao, B.C. Zhu, M.J. Liu, M.S. Shi, J.G. Yu, Y.F. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[11] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[12] | S. Wageh, A. A. Al-Ghamdi, L.J. Liu, Acta Phys. Chim. Sin. 37 (2021) |
[13] |
S. Wageh, A. A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[14] |
J.X. Wei, Y.W. Chen, H.Y. Zhang, Z.Y. Zhuang, Y. Yu, Chin. J. Catal. 42 (2021) 78-86.
DOI URL |
[15] |
J.J. Peng, J. Shen, X.H. Yu, H. Tang, Zulfiqar, Q.Q. Liu, Chin. J. Catal. 42 (2021) 87-96.
DOI URL |
[16] |
R.C. Shen, J. Xie, P.Y. Guo, L.S. Chen, X.B. Chen, X. Li, ACS Appl. Energy Mater. 1 (2018) 2232-2241.
DOI URL |
[17] |
M. Zhu, C. Zhai, M. Fujitsuka, T. Majima, Appl. Catal. B Environ. 221 (2018) 645-651.
DOI URL |
[18] |
X.Q. Hao, Y.C. Wang, J. Zhou, Z.W. Cui, Y. Wang, Z.G. Zou, Appl. Catal. B Environ. 221 (2018) 302-311.
DOI URL |
[19] |
Z.Z. Liang, R.C. Shen, Y.H. Ng, P. Zhang, Q.J. Xiang, X. Li, J. Mater. Sci. Technol. 56 (2020) 89-121.
DOI URL |
[20] |
M.H. Xiong, J.T. Yan, B. Chai, G.Z. Fan, G.S. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
[21] | S.N. Xiao, W.R. Dai, X.Y. Liu, D.L. Pan, H.J. Zou, G.S. Li, G.Q. Zhang, C.L. Su, D.Q. Zhang, W. Chen, H.X. Li, Adv. Energy Mater. 7 (2019) |
[22] |
B.C. Zhu, H.Y. Tan, J.J. Fan, B. Cheng, J.G. Yu, W.K. Ho, J. Materiomics 7 (2021) 988-997.
DOI URL |
[23] |
C. Xue, H. Li, H. An, B. Yang, J. Wei, G. Yang, ACS Catal. 8 (2018) 1532-1545.
DOI URL |
[24] |
D.R. Qin, Y. Xia, Q. Li, C. Yang, Y.M. Qin, K.L. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[25] |
R.R. Gao, B. Cheng, J.J. Fan, J.G. Yu, W.K. Ho, Chin. J. Catal. 42 (2021) 15-24.
DOI URL |
[26] |
P.F. Wang, S.H. Zhan, H.T. Wang, Y.G. Xia, Q.L. Hou, Q.X. Zhou, Y. Li, R.R. Kumar, Appl. Catal. B Environ. 230 (2018) 210-219.
DOI URL |
[27] |
S. Dhingra, T. Chhabra, V. Krishnan, C.M. Nagaraja, ACS Appl. Energy Mater. 3 (2020) 7138-7148.
DOI URL |
[28] | X.L. Li, R.B. He, Y.J. Dai, S.S. Li, N. Xiao, A.X. Wang, Y.Q. Gao, N. Li, J.F. Gao, L.H. Zhang, L. Ge, Chem. Eng. J. 400 (2020) |
[29] | M. Chen, X.B. Huang, C. Chen, W.Q. Hou, Y.M. Xu, Appl. Catal. B Environ. 298 (2021) |
[30] |
J.M. Chen, Z.R. Shen, S.M. Lv, K. Shen, R.F. Wu, X.F. Jiang, T. Fan, J.Y. Chen, Y.W. Li, J. Mater. Chem. A 6 (2018) 19631-19642.
DOI URL |
[31] |
Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[32] | C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) |
[33] | Y.X. Tang, D.F. Zhang, X.P. Pu, B. Ge, Y.Q. Li, Y.L. Huang, J. Taiwan Inst. Chem. Eng. 96 (2019) 4 87-4 95. |
[34] |
J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B Environ. 243 (2019) 556-565.
DOI URL |
[35] |
H.N. Ge, F.Y. Xu, B. Cheng, J.G. Yu, W.K. Ho, ChemCatChem 11 (2019) 6301-6309.
DOI URL |
[36] | B.W. Sun, J.K. Wu, W.J. Wang, H. Wang, Y.Y. Li, Z.Y. Guo, Y.L. Geng, H.F. Lin, L. Wang, Appl. Surf. Sci. 542 (2021) |
[37] |
X.J. Zhang, Y.C. Guo, J. Tian, B.T. Sun, Z.Q. Liang, X.S. Xu, H.Z. Cui, Appl. Catal. B Environ. 232 (2018) 355-364.
DOI URL |
[38] |
Z. Zhang, L.H. Lu, Z.Z. Lv, Y. Chen, H.Y. Jin, S.E. Hou, L.X. Qiu, L.M. Duan, J.H. Liu, K. Dai, Appl. Catal. B Environ. 232 (2018) 384-390.
DOI URL |
[39] | H.Y. Li, X.Q. Hao, Y. Liu, Y.B. Li, Z.L. Jin, J. Colloid Interface Sci. 96 (2019) 4 87-4 95. |
[40] | H.F. Gao, C.Y. Zhai, C. Yuan, Z.Q. Liu, M.S. Zhu, Electrochim. Acta 330 (2020) |
[41] | X.Y. Meng, C.C. Zhang, C.Z. Dong, W.J. Sun, D. Ji, Y. Ding, Chem. Eng. J. 389 (2020) |
[42] |
C. Li, F. Feng, J. Jian, Y.X. Xu, F. Li, H.Q. Wang, L.C. Jia, J. Mater. Sci. Technol. 79 (2021) 21-28.
DOI URL |
[43] |
Y.K. Quan, G.R. Wang, J.K. Li, Z.L. Jin, New J. Chem. 45 (2021) 3920-4393.
DOI URL |
[44] |
T.M. Di, L.Y. Zhang, B. Cheng, J.G. Yu, J.J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[45] |
F.F. Mei, Z. Li, K. Dai, J.F. Zhang, C.H. Liang, Chin. J. Catal. 41 (2020) 41-49.
DOI URL |
[46] |
W.H. Xue, W.X. Chang, X.Y. Hu, J. Fan, E.Z. Liu, Chin. J. Catal. 42 (2021) 152-163.
DOI URL |
[47] | L.B. Wang, B. Cheng, L.Y. Zhang, J.G. Yu, Small 17 (2021) |
[48] | S.J. Deng, Y.B. Shen, D. Xie, Y.F. Lu, X.L. Yu, L. Yang, X.L. Wang, X.H. Xia, J.P. Tu, J. Energy Chem. 39 (2019) 3882-3891. |
[49] |
Y. Liu, G.R. Wang, Y.B. Li, Z.L. Jin, J. Colloid Interface Sci. 554 (2019) 113-124.
DOI URL |
[50] |
L.Y. Chen, M. Zhou, Z.S. Luo, M. Wakeel, A.M. Asiri, X.C. Wang, Appl. Catal. B Environ. 241 (2019) 246-255.
DOI URL |
[51] |
C. Cheng, C. Li. Dong, J.W. Shi, L.H. Mao, Y.C. Huang, X. Kang, S.C. Zong, S.H. Shen, J. Mater. Sci. Technol. 98 (2022) 160-168.
DOI URL |
[52] |
Z.J. Guan, J.W. Pan, Q.Y. Li, G.Q. Li, J.J. Yang, ACS Sustain. Chem. Eng. 7 (2019) 7736-7742.
DOI URL |
[53] |
C. Cheng, L.H. Mao, J.W. Shi, F. Xue, S.C. Zong, B.T. Zheng, L.J. Guo, J. Mater. Chem. A 9 (2021) 12299-12306.
DOI URL |
[54] | Q.L. Xu, B.C. Zhu, B. Cheng, J.G. Yu, M.H. Zhou, W.K. Ho, Appl. Catal. B Environ. 255 (2019) |
[55] | S. Lin, Y.H. Zhang, Y. You, C. Zeng, X. Xiao, T.Y. Ma, H.W. Huang, Adv. Funct. Mater. 29 (2019) |
[56] |
H.T. Zhao, L.Y. Guo, C.W. Xing, H.Y. Liu, X.Y. Li, J. Mater. Chem. A 8 (2020) 1955-1965.
DOI URL |
[57] | X.Y. Meng, C.C. Zhang, C.Z. Dong, W.J. Sun, D. Ji, Y. Ding, Chem. Eng. J. 389 (2020) |
[58] |
J.K. Li, M. Li, Z.L. Jin, J. Colloid Interface Sci. 592 (2021) 237-248.
DOI URL |
[59] |
X.Q. Hao, J. Zhou, Z.W. Cui, Y.C. Wang, Z.G. Zou, Appl. Catal. B Environ. 229 (2018) 41-51.
DOI URL |
[60] | Y.X. Li, W.Z. Zhang, H. Li, T.Y. Yang, S.Q. Peng, C. Kao, W.Y. Zhang, Chem. Eng. J. 394 (2020) |
[61] |
H.M. Huang, K. Hu, C. Xue, Z.L. Wang, Z.G. Fang, L. Zhou, M.L. Sun, Z.Z. Xu, J.H. Kou, L.Z. Wang, C.H. Lu, J. Mater. Sci. Technol. 87 (2021) 207-215.
DOI URL |
[62] |
L.M. Xiao, T.F. Liu, M. Zhang, Q.Y. Li, J.J. Yang, ACS Sustain. Chem. Eng. 7 (2019) 2483-2491.
DOI URL |
[1] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
[2] | Chi Liu, Xu-Qi Yang, Wei Ma, Xin-Zhe Wang, Hai-Yan Jiang, Wen-Cai Ren, Dong-Ming Sun. A silicon-graphene-silicon transistor with an improved current gain [J]. J. Mater. Sci. Technol., 2022, 104(0): 127-130. |
[3] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[4] | Juan Liu, Ning Wang, Fuwei Zheng, Chuanxing Wang, Jing Wang, Baorong Hou, Qianyu Zhao, Yanli Ning, Yiteng Hu. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection [J]. J. Mater. Sci. Technol., 2022, 122(0): 211-218. |
[5] | Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 122(0): 231-242. |
[6] | Kaiqiang Xu, Jie Shen, Shiying Zhang, Difa Xu, Xiaohua Chen. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin [J]. J. Mater. Sci. Technol., 2022, 121(0): 236-244. |
[7] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[8] | Zhiwei Zhao, Xiaofeng Li, Kai Dai, Jinfeng Zhang, Graham Dawson. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance [J]. J. Mater. Sci. Technol., 2022, 117(0): 109-119. |
[9] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[10] | Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances [J]. J. Mater. Sci. Technol., 2022, 118(0): 181-189. |
[11] | Xibao Li, Qiuning Luo, Lu Han, Fang Deng, Ya Yang, Fan Dong. Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly [J]. J. Mater. Sci. Technol., 2022, 114(0): 222-232. |
[12] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[13] | Jiangshao Yang, Liwen Liu, Daoyi Wang, Jianming Tao, Yanming Yang, Jiaxin Li, Yingbin Lin, Zhigao Huang. Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3-x for MoSe2/MoO3-x@rGO composites [J]. J. Mater. Sci. Technol., 2022, 115(0): 232-240. |
[14] | Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection [J]. J. Mater. Sci. Technol., 2022, 105(0): 259-265. |
[15] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||