J. Mater. Sci. Technol. ›› 2022, Vol. 117: 109-119.DOI: 10.1016/j.jmst.2021.11.046
• Research Article • Previous Articles Next Articles
Zhiwei Zhaoa, Xiaofeng Lia, Kai Daia,*(), Jinfeng Zhanga, Graham Dawsonb
Accepted:
2021-08-15
Published:
2022-07-30
Online:
2022-08-01
Contact:
Kai Dai
About author:
∗E-mail address: daikai940@chnu.edu.cn (K. Dai).Zhiwei Zhao, Xiaofeng Li, Kai Dai, Jinfeng Zhang, Graham Dawson. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance[J]. J. Mater. Sci. Technol., 2022, 117: 109-119.
Fig. 3. TEM image of BiVO4 (a), TEM image of Mn0.5Cd0.5S-DETA (b), TEM image of BS/BVO/MCS-30 (c, d), HRTEM image of BS/BVO/MCS-30 (e); SEM image with (g)-(n) corresponding elemental mapping images of BS/BVO/MCS-30 (f).
Fig. 4. XPS spectra of pristine Mn0.5Cd0.5S-DETA, BS/BVO/MCS-30 and pure BiVO4: survey spectra (a), Bi 4f and S 2p (b), Mn 2p (c), Cd 3d (d), V 2p (e), O 1 s (f), C 1 s (g) and N 1 s (h).
Fig. 5. UV-vis DRS spectra of as-prepared samples (a), plots of (ahν)2 versus energy (hν) of BiVO4 and Mn0.5Cd0.5S-DETA (b). valence band spectra of BiVO4 (c) and Mn0.5Cd0.5S-DETA (d).
Fig. 6. Comparison of the PCR rate of different photocatalysts under visible light irradiation (a) and GC-MS patterns of the produced CO over BS/BVO/MCS-30 using 12CO2 and 13CO2 as the carbon source (b).
Fig. 10. Schematic illustration of BS/BVO/MCS heterojunction: internal electric field (IEF)-induced charge transfer, separation, and the formation of S-scheme heterojunction under visible-light irradiation for CO2 photoreduction.
[1] |
S. Qin, H. Kim, N. Denisov, D. Fehn, J. Schmidt, K. Meyer, P. Schmuki, J. Phys. Energy 3 (2021) 034003.
DOI URL |
[2] |
A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B Environ. 289 (2021) 120039.
DOI URL |
[3] | R.A. He, R. Chen, J.H. Luo, S.Y. Zhang, D.F. Xu, Acta Phys. Chim. Sin. 37 (2021) 2011022. |
[4] |
D.Y. Li, S. Hussain, Y.J. Wang, C. Huang, P. Li, M.Y. Wang, T. He, Appl. Catal. B Environ. 286 (2021) 119887.
DOI URL |
[5] |
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9-20.
DOI URL |
[6] |
G. Di Liberto, S. Tosoni, G. Pacchioni, Adv. Funct. Mater. 31 (2021) 2009472.
DOI URL |
[7] |
Y.S. Wang, Y.F. Zhao, J.J. Liu, Z.H. Li, G.I.N. Waterhouse, R. Shi, X.D. Wen, T.R. Zhang, Adv. Energy Mater. 10 (2020) 1902860.
DOI URL |
[8] |
M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, J. Mater. Sci. Technol. 56 (2020) 133-142.
DOI URL |
[9] |
X.C. Ke, J.F. Zhang, K. Dai, K. Fan, C.H. Liang, Sol. RRL 5 (2021) 2000805.
DOI URL |
[10] |
Y.X. Zhao, L.R. Zheng, R. Shi, S. Zhang, X.N. Bian, F. Wu, X.Z. Cao, G.I.N. Water- house, T.R. Zhang, Adv. Energy Mater. 10 (2020) 2002199.
DOI URL |
[11] |
Y. Huo, J.F. Zhang, Z.L. Wang, K. Dai, C.S. Pan, C.H. Liang, J. Colloid Interface Sci. 585 (2021) 684-693.
DOI URL |
[12] |
Q. Su, Y. Li, R. Hu, F. Song, S.Y. Liu, C.P. Guo, S.M. Zhu, W.B. Liu, J. Pan, Adv. Sustain. Syst. 4 (2020) 2000130.
DOI URL |
[13] |
F.Y. Xu, K. Meng, B. Cheng, S.Y. Wang, J.S. Xu, J.G. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[14] |
Z.W. Zhao, K. Dai, J.F. Zhang, G. Dawson, Adv. Sustain. Syst. (2022), doi: 10.1002/adsu.202100498.
DOI |
[15] | Y.T. Gao, F. Chen, Z. Chen, H.F. Shia, J. Mater. Sci.Technol. 56 (2020) 227-235. |
[16] |
J. Li, X.Y. Wu, Z. Wan, H. Chen, G.K. Zhang, Appl. Catal. B Environ. 243 (2019) 667-677.
DOI URL |
[17] |
A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
DOI URL |
[18] |
J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju, J.B. Baek, Adv. Sustain. Syst. 4 (2020) 2000197.
DOI URL |
[19] |
K. Wang, Y. Li, J. Li, G.K. Zhang, Appl. Catal. B Environ. 263 (2020) 117730.
DOI URL |
[20] |
T.G. Jiang, K. Wang, T. Guo, X.Y. Wu, G.K. Zhang, Chin. J. Catal. 41 (2020) 161-169.
DOI URL |
[21] |
X.H. He, A.Z. Wang, P. Wu, S.B. Tang, Y. Zhang, L. Li, P. Ding, Sci. Total Environ. 743 (2020) 140694.
DOI URL |
[22] |
P.P. Tun, J.T. Wang, T.T. Khaing, X.Y. Wu, G.K. Zhang, J. Alloy Compd. 818 (2020) 152836.
DOI URL |
[23] |
Y. Xia, L.Y. Zhang, B.W. Hu, J.G. Yu, A.A. Al-Ghamdi, S. Wageh, Chem. Eng. J. 421 (2021) 127732.
DOI URL |
[24] | Y. Cao, G.R. Wang, Q.X. Ma, Z.L. Jin, Mol. Catal. 492 (2020) 111001. |
[25] |
K. Khan, X.P. Tao, M. Shi, B. Zeng, Z.C. Feng, C. Li, R.G. Li, Adv. Funct. Mater. 31 (2021) 2009444.
DOI URL |
[26] |
T.P. Hu, K. Dai, J.F. Zhang, S.F. Chen, Appl. Catal. B Environ. 269 (2020) 118844.
DOI URL |
[27] |
H. Yang, J.F. Zhang, K. Dai, Chin. J. Catal. 43 (2022) 255-264.
DOI URL |
[28] | Z.H. Mei, G.H. Wang, S.D. Yan, J. Wang, Acta Phys. Chim. Sin. 37 (2021) 2009097. |
[29] |
M.Y. Liu, L.Q. Zhang, X.X. He, B. Zhang, H.F. Song, S.N. Li, W.S. You, J. Mater. Chem. A 2 (2014) 4619-4626.
DOI URL |
[30] |
X.B. Li, J. Xiong, X.M. Gao, J.T. Huang, Z.J. Feng, Z. Chen, Y.F. Zhu, J. Alloy Compd. 802 (2019) 196-209.
DOI URL |
[31] |
X.L. Liu, X.H. Liang, P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, Appl. Catal. B Environ. 203 (2017) 282-288.
DOI URL |
[32] |
X.F. Zhou, B. Shen, J.W. Zhai, N. Hedin, Adv. Funct. Mater. 31 (2021) 2009594.
DOI URL |
[33] |
Z.L. Wang, Y.F. Chen, L.Y. Zhang, B. Cheng, J.G. Yu, J.J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[34] |
Z.M. Pan, M.H. Liu, P.P. Niu, F.S. Guo, X.Z. Fu, X.C. Wang, Acta Phys. Chim. Sin. 36 (2020) 1906014.
DOI URL |
[35] |
W.Y. Wang, X.W. Wang, C.X. Zhou, B. Du, J.X. Cai, G. Feng, R.B. Zhang, J. Phys. Chem. C 121 (2017) 19104-19111.
DOI URL |
[36] |
Y. Guo, Y.H. Ao, P.F. Wang, C. Wang, Appl. Catal. B Environ. 254 (2019) 479-490.
DOI URL |
[37] |
J.Y. Huang, J.L. Shen, S.H. Li, J.S. Cai, S.C. Wang, Y. Lu, J.H. He, C.J. Carmalt, I.P. Parkin, Y.K. Lai, J. Mater. Sci. Technol. 39 (2020) 28-38.
DOI URL |
[38] |
Y.P. Zhang, Y. Li, D.Q. Ni, Z.W. Chen, X. Wang, Y.Y. Bu, J.P. Ao, Adv. Funct. Mater. 29 (2019) 1902101.
DOI URL |
[39] |
Y. Yang, B. Cheng, J.G. Yu, L.X. Wang, W.K. Ho, Nano Res. (2021) DOI: 10.1007/s12274-12021-13733-12270.
DOI |
[40] |
Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[41] |
C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[42] | Y. Huang, F. Mei, J. Zhang, K. Dai, G. Dawson, Acta Phys. Chim. Sin. 38 (2022) 2108028. |
[43] |
C. Zeng, Y.M. Hu, T.R. Zhang, F. Dong, Y.H. Zhang, H.W. Huang, J. Mater. Chem. A 6 (2018) 16932-16942.
DOI URL |
[44] |
Y. Huo, J.F. Zhang, K. Dai, C.H. Liang, ACS Appl. Energy Mater. 4 (2021) 956-968.
DOI URL |
[45] |
H.Z. Deng, X.G. Fei, Y. Yang, J.J. Fan, J.G. Yu, B. Cheng, L.Y. Zhang, Chem. Eng. J. 409 (2021) 127377.
DOI URL |
[46] |
B.C. Zhu, H.Y. Tan, J.J. Fan, B. Cheng, J.G. Yu, W.K. Ho, J. Materiomics 7 (2021) 988-997.
DOI URL |
[47] |
S. Wageh, A.A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[48] |
C. Li, F. Feng, J. Jian, Y.X. Xu, F. Li, H.Q. Wang, L.C. Jia, J. Mater. Sci. Technol. 79 (2021) 21-28.
DOI URL |
[49] | S. Wageh, A.A. Al-Ghamdi, L.J. Liu, Acta Phys. Chim. Sin. 37 (2021) 2010024. |
[50] | X.G. Fei, H.Y. Tan, B. Cheng, B.C. Zhu, L.Y. Zhang, Acta Phys. Chim. Sin. 37 (2021) 2010027. |
[51] |
L.B. Wang, B.C. Zhu, B. Cheng, J.J. Zhang, L.Y. Zhang, J.G. Yu, Chin. J. Catal. 42 (2021) 1648-1658.
DOI URL |
[52] |
F.F. Mei, Z. Li, K. Dai, J.F. Zhang, C.H. Liang, Chin. J. Catal. 41 (2020) 41-49.
DOI URL |
[53] |
J. Wang, G.H. Wang, B. Cheng, J.G. Yu, J.J. Fan, Chin. J. Catal. 42 (2021) 56-68.
DOI URL |
[54] |
X. Fei, L. Zhang, J. Yu, B. Zhu, Front. Nanotechnol. 3 (2021) 698351.
DOI URL |
[55] |
X. Li, J. Zhang, K. Dai, K. Fan, C. Liang, Sol. RRL 5 (2021) 2100788.
DOI URL |
[56] |
L.Z. Liu, T.P. Hu, K. Dai, J.F. Zhang, C.H. Liang, Chin. J. Catal. 42 (2021) 46-55.
DOI URL |
[57] |
X.T. Liu, S.N. Gu, Y.J. Zhao, G.W. Zhou, W.J. Li, J. Mater. Sci. Technol. 56 (2020) 45-68.
DOI URL |
[58] |
Y. Lin, D.M. Pan, H. Luo, Mater. Sci. Semicond. Process. 121 (2021) 105453.
DOI URL |
[59] |
Z.F. Li, Z.H. Wu, R.A. He, L. Wan, S.Y. Zhang, J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[60] |
J.J. Peng, J. Shen, X.H. Yu, H. Tang, Q. Zulfiqar, Q. Liu, Chin. J. Catal. 42 (2021) 87-96.
DOI URL |
[61] |
Y.J. Bao, S.Q. Song, G.J. Yao, S.J. Jiang, Sol. RRL 5 (2021) 2100118.
DOI URL |
[62] |
C. Peng, X. Xie, W.K. Xu, T. Zhou, P. Wei, J.B. Jia, K. Zhang, Y.H. Cao, H.J. Wang, F. Peng, R. Yang, X.Q. Yan, H. Pan, H. Yu, Chem. Eng. J. 421 (2021) 128766.
DOI URL |
[63] |
D.R. Qin, Y. Xia, Q. Li, C. Yang, Y.M. Qin, K.L. Lv, J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[64] |
X.F. Li, J.F. Zhang, Y. Huo, K. Dai, S.W. Li, S.F. Chen, Appl. Catal. B Environ. 280 (2021) 119452.
DOI URL |
[65] | Y. Liu, X.Q. Hao, H.Q. Hu, Z.L. Jin, Acta Phys. Chim. Sin. 37 (2021) 2008030. |
[66] |
R.C. Shen, X.Y. Lu, Q.Q. Zheng, Q. Chen, Y.H. Ng, P. Zhang, X. Li, Sol. RRL 5 (2021) 2100177.
DOI URL |
[67] |
V.D. Dang, J. Adorna, T. Annadurai, T.A.N. Bui, H.L. Tran, L.Y. Lin, R.A. Doong, Chem. Eng. J. 422 (2021) 130103.
DOI URL |
[68] |
Q.Q. Li, W.L. Zhao, Z.C. Zhai, K.X. Ren, T.Y. Wang, H. Guan, H.F. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[69] |
R. Wang, G. Cheng, Z. Dai, J. Ding, Y. Liu, R. Chen, Chem. Eng. J. 327 (2017) 371-386.
DOI URL |
[1] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
[2] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[3] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[4] | Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J]. J. Mater. Sci. Technol., 2021, 83(0): 102-112. |
[5] | Wuyou Wang, Xuewen Wang, Lei Gan, Xinfei Ji, Zili Wu, Rongbin Zhang. All-solid-state Z-scheme BiVO4-Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution [J]. J. Mater. Sci. Technol., 2021, 77(0): 117-125. |
[6] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
[7] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[8] | Linxing Meng, Wei Tian, Fangli Wu, Fengren Cao, Liang Li. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2019, 35(8): 1740-1746. |
[9] | Jun Xiao, Weiyi Yang, Shuang Gao, Caixia Sun, Qi Li. Fabrication ofultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination [J]. J. Mater. Sci. Technol., 2018, 34(12): 2331-2336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||