J. Mater. Sci. Technol. ›› 2022, Vol. 117: 99-108.DOI: 10.1016/j.jmst.2021.07.062
• Research Article • Previous Articles Next Articles
Xinyu Zhanga, Chuanwei Lib,*(), Mengyao Zhenga, Xudong Yanga, Zhenhua Yea, Jianfeng Gua,c,**(
)
Received:
2020-11-23
Revised:
2021-07-25
Accepted:
2021-07-30
Published:
2022-02-12
Online:
2022-08-01
Contact:
Chuanwei Li,Jianfeng Gu
About author:
∗E-mail addresses: li-chuanwei@sjtu.edu.cn (C. Li).Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition[J]. J. Mater. Sci. Technol., 2022, 117: 99-108.
Powder | Elemental chemical composition | |||
---|---|---|---|---|
Ti | Al | Cr | Nb | |
Atom percent (at.%) | Bal. | 47.7 | 1.86 | 2.05 |
Weight percent (wt.%) | Bal. | 33.1 | 2.5 | 4.9 |
Table 1. Chemical composition of the initial powder.
Powder | Elemental chemical composition | |||
---|---|---|---|---|
Ti | Al | Cr | Nb | |
Atom percent (at.%) | Bal. | 47.7 | 1.86 | 2.05 |
Weight percent (wt.%) | Bal. | 33.1 | 2.5 | 4.9 |
Fig. 1. (a) Schematic of the DLD process, in which the red arrows represent the back-and-forth scanning strategy, and the dotted rectangle represents the specimen extracted from the deposited wall; (b) OM image of the as-deposited sample and indentations along the building direction, which are marked as No. 1 to No. 80 from the bottom to the top, respectively; and (c) Linear EDS measurement corresponding to the yellow line in (b).
Fig. 2. (a-d) BSE images of the as-deposited specimen at regions A, B, C and D, respectively, and the inserted image in (a) is the phase distribution map obtained by EBSD, where yellow represents the βo phase, red represents the α2 phase, and blue represents the γ phase. (e) Phase fractions corresponding to the locations in (a-d).
Regions | Phase | Elemental chemical composition (at.%) | |||
---|---|---|---|---|---|
Ti | Al | Cr | Nb | ||
A | βo | Bal. | 38.1 | 2.9 | 2.6 |
Empty Cell | α2 | Bal. | 42.0 | 1.5 | 2.2 |
Empty Cell | γ | Bal. | 44.9 | 1.3 | 2.3 |
B | βo | Bal. | 37.3 | 2.2 | 2.7 |
Empty Cell | α2 | Bal. | 39.6 | 1.3 | 2.3 |
C | βo | Bal. | 35.8 | 1.8 | 2.8 |
Empty Cell | α2 | Bal. | 35.7 | 1.3 | 2.5 |
Table 2. Chemical composition of the phases at regions A-C.
Regions | Phase | Elemental chemical composition (at.%) | |||
---|---|---|---|---|---|
Ti | Al | Cr | Nb | ||
A | βo | Bal. | 38.1 | 2.9 | 2.6 |
Empty Cell | α2 | Bal. | 42.0 | 1.5 | 2.2 |
Empty Cell | γ | Bal. | 44.9 | 1.3 | 2.3 |
B | βo | Bal. | 37.3 | 2.2 | 2.7 |
Empty Cell | α2 | Bal. | 39.6 | 1.3 | 2.3 |
C | βo | Bal. | 35.8 | 1.8 | 2.8 |
Empty Cell | α2 | Bal. | 35.7 | 1.3 | 2.5 |
Fig. 3. (a-c) Bright field (BF) images of the microstructures at regions A, B, and C, respectively, and the corresponding SAED patterns are inserted; (d) BF image of the microstructure in the top region (Region D), and the related SAED patterns along the <112>βo and <113>βo directions; (e) Bright field (DF) image of the ω particles corresponding to (d); and (f) high-resolution TEM image of the ω and βo phases.
Fig. 5. Deformed microstructural morphology at Region A. (a, b) BF image and its corresponding SAED pattern along the <1120>a2 direction; (c, d) two-beam images of the α2 lath corresponding to g=<0002> and $g=\langle \bar{1}102\rangle $, respectively.
Fig. 6. TEM morphology of the γ grain at Region A. (a, b) BF image and its corresponding SAED pattern along the <001>γ direction; (c, d) two-beam images of the γ grain corresponding to g=〈110〉 and g=〈 $1\bar{1}0$〉, respectively.
Fig. 7. TEM morphology of the βo(ω) matrix at Region A. (a, b) BF image and its corresponding SAED pattern along the <001>γ direction; (c) DF image of the ω precipitates dispersed in the βo matrix; and (d) two-beam image corresponding to g=〈$\bar{1}10$〉.
Fig. 8. Deformed microstructural morphology at Region C. (a) BF image under the indentation; (b) corresponding DF image of the βo(ω) matrix; and (c) magnified two-beam image corresponding to the red rectangle in (a).
Fig. 9. Deformed microstructural morphology at Region D. (a) BF image under the indentation; (b, c) magnified two-beam images corresponding to the red rectangles in (a), which present the deformation behavior of the βo(ω) matrix and α’ martensite, respectively.
Fig. 11. (a) Phase fractions of the as-deposited specimen along the building direction; (b) corresponding Vickers hardness and plasticity parameter δH.
[1] |
K. Kothari, R. Radhakrishnan, N.M. Wereley, Prog. Aerosp. Sci. 55 (2012) 1-16.
DOI URL |
[2] |
F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Mul-lauer, M. Oehring, J.D.H. Paul, Adv. Eng. Mater. 2 (2000) 699-720.
DOI URL |
[3] |
X. Wu, Intermetallics 14 (2006) 1114-1122.
DOI URL |
[4] | J. Wang, Q. Luo, H. Wang, Y. Wu, X. Cheng, H. Tang, Addit. Manuf. 32 (2020) 101007. |
[5] | M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Addit. Manuf. 13 (2016) 61-70. |
[6] | L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Acta Mater. 5 (2010) 1887-1894. |
[7] |
Y. Wu, S. Zhang, X. Cheng, H. Wang, J. Alloys Compd. 799 (2019) 325-333.
DOI URL |
[8] | L. Lober, F.P. Schimansky, U. Kuhn, F. Pyczak, J. Eckert, J. Mater. Process. Tech- nol. 214 (2014) 1852-1860. |
[9] |
Y. Ma, D. Cuicui, H. Li, H. Li, Z. Pan, C. Shen, Mater. Sci. Eng. A 657 (2016) 86-95.
DOI URL |
[10] | S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8 (2015) 36-62. |
[11] | N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8 (2015) 12-35. |
[12] |
W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan, Y. Shi, Scr. Mater. 118 (2016) 13-18.
DOI URL |
[13] |
W. Li, J. Liu, S. Wen, Q. Wei, C. Yan, Y. Shi, Mater. Charact. 113 (2016) 125-133.
DOI URL |
[14] |
W. Li, J. Liu, Y. Zhou, S. Wen, J. Tan, S. Li, Q. Wei, C. Yan, Y. Shi, Intermetallics 85 (2017) 130-138.
DOI URL |
[15] |
W. Li, Y. Yang, J. Liu, Y. Zhou, M. Li, S. Wen, Q. Wei, C. Yan, Y. Shi, Acta Mater. 136 (2017) 90-104.
DOI URL |
[16] |
J. Schwerdtfeger, C. Korner, Intermetallics 49 (2014) 29-35.
DOI URL |
[17] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87 (2015) 309-320.
DOI URL |
[18] |
Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater. 110 (2016) 226-235.
DOI URL |
[19] | X. Zhang, C. Li, H. Zhong, X. Yang, J. Gu, Metall. Mater. Trans. A 51A (2020) 82-87. |
[20] | X. Zhang, C. Li, M. Zheng, Z. Ye, X. Yang, J. Gu, Addit. Manuf. 32 (2020) 101087. |
[21] |
X. Zhang, C. Li, M. Zheng, H. Zhong, J. Gu, Mater. Charact. 164 (2020) 110315.
DOI URL |
[22] |
X. Zhang, C. Li, Q. Wang, M. Zheng, Z. Ye, J. Gu, Mater. Res. Lett. 8 (2020) 454-461.
DOI URL |
[23] |
Y. Zhu, X. Tian, J. Li, H. Wang, J. Alloys Compd. 616 (2014) 468-474.
DOI URL |
[24] |
C. Zou, J. Li, W.Y. Wang, Y. Zhang, B. Tang, H. Wang, D. Lin, J. Wang, H. Kou, D. Xu, Comput. Mater. Sci. 152 (2018) 169-177.
DOI URL |
[25] |
R. Banerjee, P.C. Collins, D. Bhattacharyya, S. Banerjee, H.L. Fraser, Acta Mater. 51 (2003) 3277-3292.
DOI URL |
[26] |
Y.V. Mil’Man, Powder Metall. Met. C 38 (1999) 396-402.
DOI URL |
[27] |
R.E. Schafrik, Metall. Trans. A 8 (1977) 1003-1006.
DOI URL |
[28] | J.P. Hirth, J.L. Lothe, Theory of Dislocations, Wiley, 1982. |
[29] |
M. Kolb, J.M. Wheeler, H.N. Mathur, S. Neumeier, S. Korte-Kerzel, F. Pyczak, J. Michler, M. Goken, Mater. Sci. Eng. A 665 (2016) 135-140.
DOI URL |
[30] |
M. Schloffer, B. Rashkova, T. Schoberl, E. Schwaighofer, Z. Zhang, H. Clemens, S. Mayer, Acta Mater. 64 (2014) 241-252.
DOI URL |
[31] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87 (2015) 309-320.
DOI URL |
[32] |
Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater. 110 (2016) 226-235.
DOI URL |
[33] |
J. Schwerdtfeger, C. Korner, Intermetallics 49 (2014) 29-35.
DOI URL |
[34] | D. Cormier, O. Harrysson, T. Mahale, H. West, Adv. Mater. Sci. Eng. 2007 (2007) 1-4. |
[35] |
L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Acta Mater. 58 (2010) 1887-1894.
DOI URL |
[36] |
C. Kenel, C. Leinenbach, J. Alloys Compd. 637 (2015) 242-247.
DOI URL |
[37] |
Y. Zhu, J. Li, X. Tian, H. Wang, D. Liu, Mater. Sci. Eng. A 607 (2014) 427-434.
DOI URL |
[1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[2] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[3] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[4] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[5] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[6] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[7] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[8] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[9] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[10] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[11] | Pengsheng Xue, Lida Zhu, Jinsheng Ning, Peihua Xu, Shuhao Wang, Zhichao Yang, Yuan Ren, Guiru Meng. The crystallographic texture and dependent mechanical properties of the CrCoNi medium-entropy alloy by laser remelting strategy [J]. J. Mater. Sci. Technol., 2022, 111(0): 245-255. |
[12] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[13] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[14] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[15] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||