J. Mater. Sci. Technol. ›› 2022, Vol. 117: 120-132.DOI: 10.1016/j.jmst.2021.10.046
• Research Article • Previous Articles Next Articles
Hanghang Liua,c, Paixian Fua,c,*(), Hongwei Liua,c, Chen Suna,c, Ningyu Dua,b,c, Dianzhong Lia,c,*(
)
Received:
2021-08-30
Revised:
2021-10-13
Accepted:
2021-10-22
Published:
2022-01-26
Online:
2022-08-01
Contact:
Paixian Fu,Dianzhong Li
About author:
dzli@imr.ac.cn (D. Li).Hanghang Liu, Paixian Fu, Hongwei Liu, Chen Sun, Ningyu Du, Dianzhong Li. Limitations of the homogenization process of bulk martensitic mold steel-depending on the comprehensive manifestation of various strengthening[J]. J. Mater. Sci. Technol., 2022, 117: 120-132.
Steel | C | Si | Mn | Cr | Ni | Mo | O |
---|---|---|---|---|---|---|---|
A# | 0.34 | 0.31 | 1.53 | 2.02 | 1.03 | 0.19 | 0.0008 |
B# | 0.33 | 0.30 | 1.49 | 2.00 | 1.05 | 0.20 | 0.0009 |
Table 1. Chemical composition of the test steel (wt%).
Steel | C | Si | Mn | Cr | Ni | Mo | O |
---|---|---|---|---|---|---|---|
A# | 0.34 | 0.31 | 1.53 | 2.02 | 1.03 | 0.19 | 0.0008 |
B# | 0.33 | 0.30 | 1.49 | 2.00 | 1.05 | 0.20 | 0.0009 |
Fig. 2. (a) OM image of as-cast microstructure, (b) SEM image of as-cast microstructure, (c) EPMA line scanning area, and (d-g) the distribution of C, Ni, Cr, Mn, Si and Mo elements.
Empty Cell | Cr | Mn | Mo | Si |
---|---|---|---|---|
Microsegregation | 2.564 | 2.395 | 0.280 | 0.447 |
Matrix | 1.249 | 1.149 | 0.138 | 0.258 |
SR | 2.05 | 2.08 | 2.02 | 1.73 |
Table 2. SR of alloying elements of as-cast samples of B# ingot (wt%).
Empty Cell | Cr | Mn | Mo | Si |
---|---|---|---|---|
Microsegregation | 2.564 | 2.395 | 0.280 | 0.447 |
Matrix | 1.249 | 1.149 | 0.138 | 0.258 |
SR | 2.05 | 2.08 | 2.02 | 1.73 |
Fig. 3. (a) Original as-cast microstructure, (b) as-cast microstructure after homogenization, (c) original microstructure after forging and (d) as-forged microstructure after homogenization.
Empty Cell | Cr | Mn | Mo | Si |
---|---|---|---|---|
Microsegregation | 1.639 | 1.619 | 0.246 | 0.388 |
Matrix | 1.351 | 1.249 | 0.189 | 0.301 |
SR | 1.21 | 1.29 | 1.30 | 1.28 |
Table 3. SR of alloying elements of as-cast samples of A# ingot (wt%).
Empty Cell | Cr | Mn | Mo | Si |
---|---|---|---|---|
Microsegregation | 1.639 | 1.619 | 0.246 | 0.388 |
Matrix | 1.351 | 1.249 | 0.189 | 0.301 |
SR | 1.21 | 1.29 | 1.30 | 1.28 |
Fig. 7. SEM microstructures of 718H steel with different tempering temperatures: (a) B#, 540 °C, (b) B#, 600 °C, (c) B#, 650 °C, (d) B#, 700 °C, (e) A#, 540 °C, (f) A#, 600 °C, (g) A#, 650 °C, and (h) A#, 700 °C.
Fig. 8. Carbide morphologies evolution of 718H steel with different tempering temperatures: (a) B#, 540 °C, (b) B#, 600 °C, (c) B#, 650 °C, (d) B#, 700 °C, (e) A#, 540 °C, (f) A#, 600 °C, (g) A#, 650 °C, and (h) A#, 700 °C.
Fig. 9. OM micrographs of austenite grain of quenched samples: (a) A# sample and (b) B# sample; EPMA line scanning area of the enriched and diluted regions in B# sample (c) and the distribution of Cr, Mn and Mo elements (d-f).
Fig. 10. EBSD crystallographic analyzes of samples tempered at 600 °C, IPF images: (a) B# sample, (c) A# sample, HAGBs images: (b) B# sample and (d) A# sample.
Samples | Microsegregation | Matrix | Difference value |
---|---|---|---|
B# | 709 ± 15 | 380 ± 15 | 329 |
A# | 614 ± 15 | 579 ± 15 | 35 |
Table 4. Maximum microhardness in different areas of A# and B# as-cast samples (HV).
Samples | Microsegregation | Matrix | Difference value |
---|---|---|---|
B# | 709 ± 15 | 380 ± 15 | 329 |
A# | 614 ± 15 | 579 ± 15 | 35 |
Fig. 11. Mechanical properties of A# and B# samples tempering at different temperatures: (a) hardness distribution of A# sample, (b) hardness distribution of B# sample, (c) hardness difference between A# and B# samples, (d) impact property, (e) yield and tensile strength and (f) section shrinkage and elongation.
Fig. 12. SEM fracture morphologies and EDS analysis of transverse impact samples with different tempering temperatures: (a) B#, 540 °C, (b) B#, 600 °C, (c) B#, 650 °C, (d) B#, 700 °C, (e) A#, 540 °C, (f) A#, 600 °C, (g) A#, 650 °C, and (h) A#, 700 °C.
Fig. 13. Bright-field TEM micrographs and SAED pattern of tempered precipitates of test steels with different tempering temperatures: (a) A#, 700 °C, and (b) B#, 700 °C.
Temperature ( °C) | DCr/m2/s | DMo/m2/s |
---|---|---|
1250 | 1.03 × 10-13 | 2.10 × 10-14 |
Table 5. Diffusion coefficients of Cr and Mo elements at 1250 °C.
Temperature ( °C) | DCr/m2/s | DMo/m2/s |
---|---|---|
1250 | 1.03 × 10-13 | 2.10 × 10-14 |
Fig. 14. Schematic diagrams of microsegregation evolution: (a) as-cast, (b) forged, (c) tempered states; and (d) schematic diagram of crack source analysis of impact sample.
[1] |
R.M. Wu, J.W. Li, Y. Su, S.M. Liu, Z.S. Yu, Mater. Sci. Eng. A 706 (2017) 15-21.
DOI URL |
[2] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, M.Y. Sun, D.Z. Li, Mater. Sci. Eng. A 737 (2018) 274-285.
DOI URL |
[3] |
H.H. Liu, P.X. Fu, H.W. Liu, Y.F. Cao, C. Sun, N.Y. Du, M.Y. Sun, D.Z. Li, J. Mater. Sci. Technol. 50 (2020) 245-256.
DOI URL |
[4] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, N.Y. Du, D.Z. Li, J. Mater. Sci. Technol. 35 (2019) 2526-2536.
DOI URL |
[5] |
L. Ma, J.Y. Liu, C. Li, Z.Y. Zhong, L. Lu, S.N. Luo, Mater. Charact. 153 (2019) 294-303.
DOI |
[6] |
H.W. Ji, C.H. Ren, Y. Wang, Y. Guo, X.C. Zhang, H.W. Wang, Y.Y. Zhu, Mater. Sci. Eng. A 748 (2019) 253-261.
DOI URL |
[7] |
R.N. Penha, J. Vatavuk, A.A. Couto, S.A.D.L. Pereira, S.A.D. Sousa, L.D.C.F. Canale, Eng. Fail. Anal. 53 (2015) 59-68.
DOI URL |
[8] |
L.H. Chen, Z.P. Liu, Y.N. Pan, Metall. Mater. Trans. A 47 (2016) 4137-4145.
DOI URL |
[9] |
L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, B. Ye, H.Y. Jiang, W.J. Ding, J. Mater. Sci. Technol. 33 (2017) 935-940.
DOI |
[10] |
L. Xiao, G.Y. Yang, Y. Liu, S.F. Luo, W.Q. Jie, J. Mater. Sci. Technol. 34 (2018) 2246-2255.
DOI |
[11] | Y.X. Wang, X.W. Ma, G.Q. Zhao, X. Xu, X.X. Chen, C.S. Zhang, J. Mater. Sci. Tech- nol. 82 (2021) 161-178. |
[12] |
M. Torkar, F. Vodopivec, S. Petovar, Mater. Sci. Eng. A 173 (1993) 313-316.
DOI URL |
[13] |
X.G. Liu, D.N. Meng, Y.H. Wang, H. Chen, M. Jin, J. Mater. Eng. Perform. 24 (2015) 1079-1085.
DOI URL |
[14] |
S. He, C.S. Li, J.Y. Ren, Y.H. Han, Steel Res. Int. 89 (2018) 1800148.
DOI URL |
[15] |
G.H. Yan, L.Z. Han, C.W. Li, X.M. Luo, J.F. Gu, Metall. Mater. Trans. A 48 (2017) 3470-3481.
DOI URL |
[16] |
H.H. Liu, P.X. Fu, H.W. Liu, D.Z. Li, Materials 11 (2018) 583 (Basel).
DOI URL |
[17] |
H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, X.P. Ma, D.Z. Li, Mater. Sci. Eng. A 709 (2018) 181-192.
DOI URL |
[18] |
D. Firrao, P. Matteis, P.Russo Spena, R. Gerosa, Mater. Sci. Eng. A 559 (2013) 371-383.
DOI URL |
[19] |
H. Hoseiny, F.G. Caballero, R. M’Saoubi, B. Högman, J. Weidow, H.O. Andrén, Metall. Mater. Trans. A 46 (2015) 2157-2171.
DOI URL |
[20] |
H. Hoseiny, F.G. Caballero, D.S. Martín, C. Capdevila, Mater. Sci. Forum 706-709 (2012) 2140-2145.
DOI URL |
[21] |
J. Sun, S.T. Wei, S.P. Lu, Mater. Sci. Eng. A 772 (2020) 138739.
DOI URL |
[22] |
R. Kadalbal, J.J. Montoya-Cruz, T.Z. Kattamis, Metall. Trans. A 11 (1980) 1547-1553.
DOI URL |
[23] |
S.S. Zhang, M.Q. Li, Y.G. Liu, J. Luo, T.Q. Liu, Mater. Sci. Eng. A 528 (2011) 4967-4972.
DOI URL |
[24] |
J. Chen, W.N. Zhang, Z.Y. Liu, G.D. Wang, Metall. Mater. Trans. A 48 (2017) 5849-5859.
DOI URL |
[25] |
C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scr. Mater. 58 (2008) 492-495.
DOI URL |
[26] |
A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo, Mater. Sci. Eng. A 527 (2010) 7538-7544.
DOI URL |
[27] |
J. Li, X.H. Gao, L.X. Du, Z.G. Liu, J. Mater. Sci. Technol. 33 (2017) 1504-1512.
DOI URL |
[28] | Z.Y. Sun, C.M. Liu, in:Diffusion and Phase Transformationin Alloys, Northeast-ern University Press, Shenyang, 2002, pp. 39-41. |
[29] | Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.(in Chinese) |
[30] |
J.H. Kong, C.S. Xie, Mater. Des. 27 (2006) 1169-1173.
DOI URL |
[31] |
J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7 (2017) 40 (Basel).
DOI URL |
[32] |
L.N. Kong, Y.H. Liu, J.A. Liu, Y.L. Song, S.S. Li, R.H. Zhang, T.J. Li, Y. Liang, J. Alloy. Compd. 648 (2015) 494-499.
DOI URL |
[33] |
F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72-83.
DOI URL |
[34] |
M. Baharvand, A. Zanganeh, H. Mirzadeh, M. Habibi Parsa, Mater. Sci. Technol. 36 (2020) 835-842.
DOI URL |
[35] |
B. Kim, E. Boucard, T. Sourmail, D.S. Martín, N. Gey, P. Rivera-Díaz-Del-Castillo, Acta Mater. 68 (2014) 169-178.
DOI URL |
[36] |
H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Acta Mater. 59 (2011) 6264-6274.
DOI URL |
[37] |
H.C. Feng, L. Cai, L.F. Wang, X.D. Zhang, F. Fang, J. Mater. Sci. Technol. 97 (2022) 89-100.
DOI URL |
[38] |
K. Li, L. Wei, B. An, B. Yu, R.D.K. Misra, Mater. Sci. Eng. A 739 (2019) 445-454.
DOI URL |
[39] |
X.Z. Ran, D. Liu, J. Li, X. Liu, H.M. Wang, X. Cheng, B. He, H.B. Tang, Mater. Sci. Eng. A 723 (2018) 8-21.
DOI URL |
[1] | Rong Jiang, Bo Chen, Xianchao Hao, Yingche Ma, Shuo Li, Kui Liu. Micro-segregation and Precipitation of Alloy 690 during Isothermal Solidification: the Role of Nitrogen Content [J]. J Mater Sci Technol, 2012, 28(5): 446-452. |
[2] | Xiaoming ZHANG, Zhengyi JIANG, Xianghua LIU, Guodong WANG. Simulation of Fluid Flow, Heat Transfer and Micro-Segregation in Twin-roll Strip Casting of Stainless Steel [J]. J Mater Sci Technol, 2006, 22(03): 295-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||