J. Mater. Sci. Technol. ›› 2022, Vol. 121: 236-244.DOI: 10.1016/j.jmst.2021.12.070
• Research Article • Previous Articles Next Articles
Kaiqiang Xua,b, Jie Shenb, Shiying Zhangb,*(), Difa Xub,*(
), Xiaohua Chena,*(
)
Received:
2021-10-29
Revised:
2021-12-22
Accepted:
2021-12-23
Published:
2022-09-10
Online:
2022-03-18
Contact:
Shiying Zhang,Difa Xu,Xiaohua Chen
About author:
xiaohuachen@hnu.edu.cn (X. Chen).Kaiqiang Xu, Jie Shen, Shiying Zhang, Difa Xu, Xiaohua Chen. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin[J]. J. Mater. Sci. Technol., 2022, 121: 236-244.
Fig. 2. SEM pictures of pristine BiOCl (a), In2O3 (b) and 20% In2O3-BiOCl (c), (d), TEM images of 20% In2O3-BiOCl (e), HRTEM image of 20% In2O3-BiOCl (f).
Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
BiOCl | 0.92 | 0.004 | 22.05 |
In2O3 | 19.01 | 0.172 | 36.50 |
20%In2O3-BiOCl | 2.29 | 0.011 | 24.90 |
Table 1. Specific surface area and pore structure of prepared samples.
Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
BiOCl | 0.92 | 0.004 | 22.05 |
In2O3 | 19.01 | 0.172 | 36.50 |
20%In2O3-BiOCl | 2.29 | 0.011 | 24.90 |
Fig. 6. Photocatalytic activity of BiOCl, In2O3 and In2O3-BiOCl heterojunctions. The degradation rates of CIP for all samples in degradation percentage (a), kinetics of the CIP decomposition over different samples (b), the apparent rate constants k of the CIP decomposition over different samples (c) and temporal UV-Vis spectra of CIP solution for 20%In2O3-BiOCl (d).
[1] |
J. Yu, A.C. Wang, M. Zhang, Z. Lin, Mater. Today 50 (2021) 329-357.
DOI URL |
[2] | D. Kuo, M. Liu, K.R.S. Kumar, K. Hamaguchi, K.P. Gan, T. Sakamoto, T. Ogawa, R. Kato, N. Miyamoto, H. Nada, M. Kimura, M. Henmi, H. Katayama, T. Kato, Small 16 (2020) |
[3] |
A. Chatterjee, P. Kar, D. Wulferding, P. Lemmens, S.K. Pal, ACS Appl. Nano Mater. 3 (2020) 2733-2744.
DOI URL |
[4] | S. Dong, Y. Zhao, J. Yang, X. Liu, W. Li, L. Zhang, Y. Wu, J. Sun, J. Feng, Y. Zhu, Appl. Catal. B-Environ. 291 (2021) |
[5] | Q. Wu, M.S. Siddique, Y. Guo, M. Wu, Y. Yang, H. Yang, Appl. Catal. B-Environ. 286 (2021) |
[6] |
S. Gai, R. Fan, J. Zhang, X. Zhou, K. Xing, K. Zhu, W. Jia, W. Sui, P. Wang, Y. Yang, J. Mater. Chem. A 9 (2021) 3369-3378.
DOI URL |
[7] | J. Yao, Y. Deng, S. Pan, R. Korna, J. Wen, N. Yuan, K. Wang, H. Li, Y. Yang, J. Hazard. Mater. 415 (2021) |
[8] | T. Tian, H.Q. Yu, Biotechnol. Adv. 44 (2020) |
[9] | Q.Y. Wu, Z.W. Yang, Y. Du, W.Y. Ouyang, W.L. Wang, J. Hazard. Mater. 418 (2021) |
[10] | H.Liu Mandeep, J. Luo, P. Shukla, J. Hazard. Mater. 398 (2020) |
[11] |
L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 42 (2021) 46-55.
DOI URL |
[12] |
B. Zhang, X. Hu, E. Liu, J. Fan, Chin. J. Catal. 42 (2021) 1519-1529.
DOI URL |
[13] |
Q. L W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi, J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[14] | K. Sridharan, S. Shenoy, S.G. Kumar, C. Terashima, A. Fujishima, S. Pitchaimuthu, Catalysts 11 (2021) |
[15] |
R. He, H. Liu, H. Liu, D. Xu, L. Zhang, J. Mater. Sci. Technol. 52 (2020) 145-151.
DOI URL |
[16] |
M. Li, S. Yu, H. Huang, X. Li, Y. Feng, C. Wang, Y. Wang, T. Ma, L. Guo, Y. Zhang, Angew. Chem. Int. Edit. 58 (2019) 9517-9521.
DOI URL |
[17] | B. Zhang, J. Zhang, R. Duan, Q. Wan, X. Tan, Z. Su, B. Han, L. Zheng, G. Mo, Nano Energy 78 (2020) |
[18] |
H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Angew. Chem. Int. Edit. 57 (2018) 122-138.
DOI URL |
[19] |
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang, Y. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36.
DOI URL |
[20] |
S. Wageh, A. Ghamdi, R. Jafer, X. Li, P. Zhang, Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[21] | J. Bai, R. Shen, W. Chen, J. Xie, P. Zhang, Z. Jiang, X. Li, Chem. Eng. J. 429 (2022) |
[22] | X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, Acta Phys.-Chim. Sin. 37 (2021) |
[23] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B-Environ. 243 (2019) 556-565.
DOI URL |
[24] | C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) |
[25] | A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, Appl. Catal. B-Environ. 289 (2021) |
[26] | S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Chem. Eng. J. 428 (2022) |
[27] |
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543-1559.
DOI URL |
[28] |
P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Edit. 59 (2020) 5218-5225.
DOI URL |
[29] | S. Wu, X. Yu, J. Zhang, Y. Zhang, Y. Zhu, M. Zhu, Chem. Eng. J. 411 (2021) |
[30] | Z. Zhang, R. Guo, J. Tang, Y. Miao, J. Gu, W. Pan, J. CO 2 Util. 45 (2021) |
[31] |
Y. Huo, J. Zhang, Z. Wang, K. Dai, C. Pan, C. Liang, J. Colloid Interf. Sci. 585 (2021) 684-693.
DOI URL |
[32] |
S. Wang, B.Y. Guan, X. Lou, J. Am. Chem. Soc. 140 (2018) 5037-5040.
DOI URL |
[33] | Y. Chao, P. Zhou, N. Li, J. Lai, Y. Yang, Y. Zhang, Y. Tang, W. Yang, Y. Du, D. Su, Y. Tan, S. Guo, Adv. Mater. 31 (2019) |
[34] |
J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X. Guo, C. Song, ACS Catal 11 (2021) 1406-1423.
DOI URL |
[35] | H. Xu, Y. Wang, X. Dong, N. Zheng, H. Ma, X. Zhang, Appl. Catal. B-Environ. 257 (2019) |
[36] | Q. Zhu, Y. Sun, S. Xu, Y. Li, X. Lin, Y. Qin, J. Hazard. Mater. 382 (2020) |
[37] |
X. Liu, B. Xu, X. Duan, Q. Hao, W. Wei, S. Wang, B.J. Ni, Environ. Sci. Nano 8 (2021) 1010-1018.
DOI URL |
[38] | Z. Wei, W. Li, J. Hu, X. Ma, Y. Zhu, J. Hazard. Mater. 402 (2021) |
[39] |
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chin. J. Catal. 42 (2021) 56-68.
DOI URL |
[40] |
Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42 (2021) 69-77.
DOI URL |
[41] |
Y. Pang, W. Zang, Z. Kou, L. Zhang, G. Xu, J. Lv, X. Gao, Z. Pan, J. Wang, Y. Wu, Nanoscale 12 (2020) 4302-4308.
DOI URL |
[42] | Z. Zheng, H. Li, X. Zhang, H. Jiang, X. Geng, S. Li, H. Tu, X. Cheng, P. Yang, Y. Wan, Nano Energy 68 (2020) |
[43] | Y. Cai, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Adv. Mater. 32 (2020) |
[44] | Y. Chen, F. Su, H. Xie, R. Wang, C. Ding, J. Huang, Y. Xu, L. Ye, Chem. Eng. J. 404 (2021) |
[45] |
Z. Wu, Y. Jiang, X. Xiong, S. Ding, Y. Shi, X. Liu, Y. Liu, Z. Huang, J. Hu, Catal. Sci. Technol. 7 (2017) 3464-3468.
DOI URL |
[46] |
D.X. Zhao, G.P. Lu, C. Cai, Green Chem 23 (2021) 1823-1833.
DOI URL |
[47] |
Z. Li, Z. Wu, R. He, L. Wan, S. Zhang, J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[48] | Y. Li, Q. Wu, Y. Chen, R. Zhang, C. Li, K. Zhang, M. Li, Y. Lin, D. Wang, X. Zou, T. Xie, Appl. Catal. B-Environ. 290 (2021) |
[49] |
L. Ma, X. Li, Z. Li, Y. Zhang, Z. Ji, H. Wang, W. Mai, J. Li, L. Pan, J. Colloid Interf. Sci. 599 (2021) 857-862.
DOI URL |
[50] |
D. Wu, R. Wang, C. Yang, Y. An, H. Lu, H. Wang, K. Cao, Z. Gao, W. Zhang, F. Xu, K. Jiang, J. Colloid Interf. Sci. 556 (2019) 111-119.
DOI URL |
[51] |
W. Liu, J. Sun, L. Xu, S. Zhu, X. Zhou, S. Yang, B. Dong, X. Bai, G. Lu, H. Song, Nanoscale Horiz. 4 (2019) 1361-1371.
DOI URL |
[52] |
L. Sun, Y. Yuan, R. Li, W. Zhan, X.J. Wang, Y. Zhao, X. Han, J. Mater. Chem. A 7 (2019) 25423-25432.
DOI URL |
[53] | K. Xu, J. Shen, D. Xu, Z. Li, S. Zhang, Z. Wu, W. Feng, X. Xiao, S. Zhang, J. Liu, Appl. Surf. Sci. 495 (2019) |
[54] |
H. Ge, F. Xu, B. Cheng, J. Yu, W. Ho, ChemCatChem. 11 (2019) 6301-6309.
DOI URL |
[55] |
X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Appl. Catal. B-Environ. 244 (2019) 240-249.
DOI URL |
[56] |
W.J. Ong, L.K. Putri, Y.C. Tan, L.L. Tan, N. Li, Y.H. Ng, X. Wen, S.P. Chai, Nano Res 10 (2017) 1673-1696.
DOI URL |
[57] | H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang, Chem. Eng. J. 409 (2021) |
[58] | L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 411 (2021) |
[59] | B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A. A. Al-Ghamdi, S. Wageh, Appl. Catal. B-Environ. 288 (2021) |
[60] | S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, Y. Chen, C. Zhou, R. Deng, W. Wang, Chem. Eng. J. 420 (2021) |
[1] | Yidu Wang, Jingnan Ding, Jun Zhao, Jiajun Wang, Xiaopeng Han, Yida Deng, Wenbin Hu. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids [J]. J. Mater. Sci. Technol., 2022, 121(0): 220-226. |
[2] | Changyan Chen, Ting Jiang, Jianhua Hou, Tingting Zhang, Geshan Zhang, Yongcai Zhang, Xiaozhi Wang. Oxygen vacancies induced narrow band gap of BiOCl for efficient visible-light catalytic performance from double radicals [J]. J. Mater. Sci. Technol., 2022, 114(0): 240-248. |
[3] | Kang Xu, Liang Wang, Haifeng Feng, Zhongfei Xu, Jincheng Zhuang, Yi Du, Feng Pan, Weichang Hao. Theoretical insights into nitrogen oxide activation on halogen defect-rich {001} facets of bismuth oxyhalide [J]. J. Mater. Sci. Technol., 2021, 77(0): 217-222. |
[4] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
[5] | Dongha Im, Donghyun Kim, Dasol Jeong, Woon Ik Park, Myoungpyo Chun, Joon-Shik Park, Hyunjung Kim, Hyunsung Jung. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform [J]. J. Mater. Sci. Technol., 2020, 38(0): 56-63. |
[6] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
[7] | Zhu Yanan,Zheng Ganhong,Dai Zhenxiang,Zhang Lingyun,Ma Yongqing. Photocatalytic and Luminescent Properties of SrMoO4 Phosphors Prepared via Hydrothermal Method with Different Stirring Speeds [J]. J. Mater. Sci. Technol., 2017, 33(1): 23-29. |
[8] | Hiroaki Onoda, Yurie Sato. Temperature Dependence and P/Zn Ratio in Phosphoric Acid Treatment of Zinc Oxide [J]. J. Mater. Sci. Technol., 2016, 32(5): 432-436. |
[9] | Jiushan Cheng, Cong Wang, Yinfang Cui, Ying Sun, Ying Zuo. Visible Light Photocatalytic Properties and Thermochromic Phenomena of Nanostructured BiOCl Microspheres [J]. J. Mater. Sci. Technol., 2014, 30(11): 1130-1133. |
[10] | Dong Hao, Zhenming Yang, Chunhai Jiang, Jinsong Zhang. Photocatalytic Activities of TiO2 Coated on Different Semiconductive SiC Foam Supports [J]. J. Mater. Sci. Technol., 2013, 29(11): 1074-1078. |
[11] | Amandeep Kaur Bal, Rajinder Singh, R.K. Bedi. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films [J]. J Mater Sci Technol, 2012, 28(8): 700-706. |
[12] | M. Faisal, Sher Bahadar Khan, Mohammed M. Rahman, Aslam Jamal, Kalsoom Akhtar, M.M. Abdullah. Role of ZnO-CeO2 Nanostructures as a Photo-catalyst and Chemi-sensor [J]. J Mater Sci Technol, 2011, 27(7): 594-600. |
[13] | Huiling Tai, Yadong Jiang, Guangzhong Xie, Junsheng Yu. Preparation, Characterization and Comparative NH3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films [J]. J Mater Sci Technol, 2010, 26(7): 605-613. |
[14] | Weichang HAO, Feng PAN, Tianmin WANG, Shukai ZHENG. Responding Depth of Photocatalytic Activity of TiO2 Self-assembled Films [J]. J Mater Sci Technol, 2004, 20(04): 472-474. |
[15] | Yibing XIE, Chunwei YUAN. Visible Light Induced Photocatalysis of Cerium Ion Modified Titania Sol and Nanocrystallites [J]. J Mater Sci Technol, 2004, 20(01): 14-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||