J. Mater. Sci. Technol. ›› 2021, Vol. 77: 217-222.DOI: 10.1016/j.jmst.2020.10.008
• Research Article • Previous Articles Next Articles
Kang Xua,b, Liang Wangb, Haifeng Fengb, Zhongfei Xud, Jincheng Zhuanga, Yi Dua,b, Feng Panc,*(), Weichang Haoa,b,**(
)
Received:
2020-06-22
Revised:
2020-08-18
Accepted:
2020-09-02
Published:
2021-06-30
Online:
2020-10-11
Contact:
Feng Pan,Weichang Hao
About author:
** BUAA-UOW Joint Centre, School of Physics, Beihang University, Haidian District, Beijing, 100191, China. Whao@buaa.edu.cn (W. Hao).Kang Xu, Liang Wang, Haifeng Feng, Zhongfei Xu, Jincheng Zhuang, Yi Du, Feng Pan, Weichang Hao. Theoretical insights into nitrogen oxide activation on halogen defect-rich {001} facets of bismuth oxyhalide[J]. J. Mater. Sci. Technol., 2021, 77: 217-222.
Fig. 1. (a) Surface energy and (b) defect formation energy of BiV, OV, and ClV on Cl-B001 facetes. The Cl-terminated surface Cl1-Cl2 has the lowest surface energy, indicating the most likely exposure of the BiOCl (001) surface. Under this exposure, the surface Cl vacancy has the lowest formation energy.
Fig. 2. Density of states of (a) Cl-B001 (b) Clv-Cl-B001, and the band decomposed charge density of (c) the VBM of perfect Cl-B001, (d) the CBM of perfect Cl-B001, and (e) the VBM of Clv-Cl-B001. (f) The surface vacancy state (SVS) of Clv-Cl-B001. The Fermi level is set at zero in (a) and (b). The isosurface of the charge density corresponds to 0.0025 e/? in (c)-(f).
Eads (eV) | L(N1-O1) (Å) | L(N1-O2) (Å) | L(N1-O1/O2) (Å) | L(N1-N2) (Å) | L(N1-N2) (Å) | θ (°) | θ(°) | |
---|---|---|---|---|---|---|---|---|
adsorbed | adsorbed | isolated | adsorbed | isolated | adsorbed | isolated | ||
NO2 -1 | -2.8 | 1.37 | 1.21 | 1.21 | - | - | 113.32 | 133.83 |
NO2 -2 | -2.89 | 1.34 | 1.23 | - | - | 112.99 | ||
NO2 -3 | -2.39 | 1.27 | 1.27 | - | - | 116.9 | ||
NO2 -4 | -2.61 | 1.27 | 1.27 | - | - | 115.99 | ||
NO2 -5 | -2.65 | 1.27 | 1.27 | - | - | 114.74 | ||
NO2 -6 | -2.76 | 1.27 | 1.27 | - | - | 115.58 | ||
NO2 -7 | -2.65 | 1.27 | 1.27 | - | - | 115.06 | ||
NO2 -8 | -2.68 | 1.26 | 1.26 | - | - | 114.45 | ||
NO-1 | -1.74 | 1.24 | - | 1.17 | - | - | 180 | 180 |
NO-2 | -1.21 | 1.29 | - | - | - | |||
NO-3 | -1.78 | 1.25 | - | - | - | |||
NO-4 | -1.74 | 1.23 | - | - | - | |||
N2 O-1 | -0.58 | 1.19 | - | 1.2 | 1.15 | 1.14 | 180 | 180 |
N2 O-2 | -0.59 | 1.22 | - | 1.14 | 180 | |||
N2 O-3 | -0.49 | 1.32 | - | 1.19 | 132.73 | |||
N2 O-4 | -1.57 | - | - | 1.11 | - |
Table 1. The adsorption energy, bond lengths, and bond angles of adsorbed and isolated NOX molecules. Eads is the adsorption energy. L(N1-O1), L(N1-O2), and L(N1-N2) are the bond lengths of NOX. θ is the angle of the molecule. Adsorbed and isolated represent the positions of molecules that are adsorbed on ClV-Cl-B001 and free, respectively.
Eads (eV) | L(N1-O1) (Å) | L(N1-O2) (Å) | L(N1-O1/O2) (Å) | L(N1-N2) (Å) | L(N1-N2) (Å) | θ (°) | θ(°) | |
---|---|---|---|---|---|---|---|---|
adsorbed | adsorbed | isolated | adsorbed | isolated | adsorbed | isolated | ||
NO2 -1 | -2.8 | 1.37 | 1.21 | 1.21 | - | - | 113.32 | 133.83 |
NO2 -2 | -2.89 | 1.34 | 1.23 | - | - | 112.99 | ||
NO2 -3 | -2.39 | 1.27 | 1.27 | - | - | 116.9 | ||
NO2 -4 | -2.61 | 1.27 | 1.27 | - | - | 115.99 | ||
NO2 -5 | -2.65 | 1.27 | 1.27 | - | - | 114.74 | ||
NO2 -6 | -2.76 | 1.27 | 1.27 | - | - | 115.58 | ||
NO2 -7 | -2.65 | 1.27 | 1.27 | - | - | 115.06 | ||
NO2 -8 | -2.68 | 1.26 | 1.26 | - | - | 114.45 | ||
NO-1 | -1.74 | 1.24 | - | 1.17 | - | - | 180 | 180 |
NO-2 | -1.21 | 1.29 | - | - | - | |||
NO-3 | -1.78 | 1.25 | - | - | - | |||
NO-4 | -1.74 | 1.23 | - | - | - | |||
N2 O-1 | -0.58 | 1.19 | - | 1.2 | 1.15 | 1.14 | 180 | 180 |
N2 O-2 | -0.59 | 1.22 | - | 1.14 | 180 | |||
N2 O-3 | -0.49 | 1.32 | - | 1.19 | 132.73 | |||
N2 O-4 | -1.57 | - | - | 1.11 | - |
Fig. 3. Adsorption energy, crystal structure and charge density difference for the adsorbed configurations NO2-1, NO2-2, NO-2, NO-3, N2O-3, and N2O-4 which have lowest adsorption or highest activation of NO bonds. Yellow and blue colors represent the gain and loss of electrons, respectively. The bond lengthes of N-O in free NO2, NO and N2O are 1.21 ?, 1.17 ? and 1.20 ? and N-N distance in free N2O is 1.14 ?.
Bi1 | Bi2 | Bi3 | Bi4 | O1 | O2 | N1 | N2 | |
---|---|---|---|---|---|---|---|---|
NO2 -1 | -0.0828 | -0.0828 | -0.078 | -0.078 | 0.4491 | 0.1373 | 0.1595 | — |
NO2 -2 | -0.0722 | -0.0723 | -0.0909 | -0.076 | 0.3931 | 0.1578 | 0.1874 | — |
NO2 -3 | -0.0886 | -0.0886 | -0.0886 | -0.0886 | 0.2014 | 0.2024 | 0.386 | — |
NO2 -4 | -0.103 | -0.0639 | -0.0641 | -0.1029 | 0.2087 | 0.2092 | 0.3456 | — |
NO2 -5 | -0.0962 | -0.0962 | -0.0963 | -0.0963 | 0.3118 | 0.3105 | 0.1663 | — |
NO2 -6 | -0.1136 | -0.0628 | -0.0628 | -0.1136 | 0.3015 | 0.3017 | 0.171 | — |
NO2 -7 | -0.0937 | -0.0921 | -0.0938 | -0.0921 | 0.3054 | 0.3058 | 0.1624 | — |
NO2 -8 | -0.1088 | -0.0705 | -0.0739 | -0.1089 | 0.2303 | 0.2298 | 0.2874 | — |
NO-1 | -0.0492 | -0.0492 | -0.0492 | -0.0492 | -0.0569 | — | 0.6691 | — |
NO-2 | -0.0719 | -0.0719 | -0.0722 | -0.0722 | 0.2451 | — | 0.4902 | — |
NO-3 | -0.0855 | -0.0855 | -0.0854 | -0.0854 | 0.0366 | — | 0.6541 | — |
NO-4 | -0.0488 | -0.0492 | -0.0504 | -0.0443 | -0.0608 | — | 0.6719 | — |
N2 O-1 | -0.0194 | -0.0194 | -0.0194 | -0.0194 | -0.1483 | — | 0.1584 | 0.0038 |
N2 O-2 | -0.0197 | -0.0197 | -0.0197 | -0.0197 | 0.1254 | — | 0.4139 | -0.5214 |
N2 O-3 | -0.0941 | -0.0941 | -0.0764 | -0.0764 | 0.3141 | — | 0.1698 | 0.2471 |
N2 O-4 | -0.0874 | -0.0793 | -0.0797 | -0.072 | 0.4503 | — | 0.286 | 0.0351 |
Table 2. Charge transfer analysis of Bi1, Bi2, Bi3, and Bi4 around ClV and O1, O2, N1, and N2 of NOX. Here, we give the electron acceptors (+) and donors (-) compared with the ClV-Cl-B001 or isolated NOX to analyze the charge transfer before and after NOX adsorption on ClV-Cl-B001.
Bi1 | Bi2 | Bi3 | Bi4 | O1 | O2 | N1 | N2 | |
---|---|---|---|---|---|---|---|---|
NO2 -1 | -0.0828 | -0.0828 | -0.078 | -0.078 | 0.4491 | 0.1373 | 0.1595 | — |
NO2 -2 | -0.0722 | -0.0723 | -0.0909 | -0.076 | 0.3931 | 0.1578 | 0.1874 | — |
NO2 -3 | -0.0886 | -0.0886 | -0.0886 | -0.0886 | 0.2014 | 0.2024 | 0.386 | — |
NO2 -4 | -0.103 | -0.0639 | -0.0641 | -0.1029 | 0.2087 | 0.2092 | 0.3456 | — |
NO2 -5 | -0.0962 | -0.0962 | -0.0963 | -0.0963 | 0.3118 | 0.3105 | 0.1663 | — |
NO2 -6 | -0.1136 | -0.0628 | -0.0628 | -0.1136 | 0.3015 | 0.3017 | 0.171 | — |
NO2 -7 | -0.0937 | -0.0921 | -0.0938 | -0.0921 | 0.3054 | 0.3058 | 0.1624 | — |
NO2 -8 | -0.1088 | -0.0705 | -0.0739 | -0.1089 | 0.2303 | 0.2298 | 0.2874 | — |
NO-1 | -0.0492 | -0.0492 | -0.0492 | -0.0492 | -0.0569 | — | 0.6691 | — |
NO-2 | -0.0719 | -0.0719 | -0.0722 | -0.0722 | 0.2451 | — | 0.4902 | — |
NO-3 | -0.0855 | -0.0855 | -0.0854 | -0.0854 | 0.0366 | — | 0.6541 | — |
NO-4 | -0.0488 | -0.0492 | -0.0504 | -0.0443 | -0.0608 | — | 0.6719 | — |
N2 O-1 | -0.0194 | -0.0194 | -0.0194 | -0.0194 | -0.1483 | — | 0.1584 | 0.0038 |
N2 O-2 | -0.0197 | -0.0197 | -0.0197 | -0.0197 | 0.1254 | — | 0.4139 | -0.5214 |
N2 O-3 | -0.0941 | -0.0941 | -0.0764 | -0.0764 | 0.3141 | — | 0.1698 | 0.2471 |
N2 O-4 | -0.0874 | -0.0793 | -0.0797 | -0.072 | 0.4503 | — | 0.286 | 0.0351 |
Fig. 4. Density of states of adsorbed molecules of NOX, and the 4Bi atoms and 4Cl atoms that are the nearest neighbors and next nearest neighbors of ClV in the adsorbed configurations: (a) NO2-1, NO2-2, (b) NO-2, NO-3, and (c) N2O-3, N2O-4, which has the lowest adsorption energies or highest activation of N—O bonds. NO2-1, NO2-2, NO-2, NO-3 and N2O-4 show strong interactions with ClV-Cl-B001.
[1] |
J. Nowotny, M.A. Alim, T. Bak, M.A. Idris, M. Ionescu, K. Prince, M.Z. Sahdan, K. Sopian, M.A. Ma. Teridi, W. Sigmund, Chem. Soc. Rev. 44 (2015) 8424-8442.
DOI URL PMID |
[2] |
H. Zhang, R. Lv, J. Mater. 4 (2018) 95-107.
DOI URL |
[3] |
S. Wendt, P.T. Sprunger, E. Lira, G.K.H. Madsen, Z. Li, J.Ø. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer, F. Besenbacher, Science 320 (2008) 1755.
DOI URL |
[4] |
J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, L. Guo, Adv. Mater. 29 (2017), 1604797.
DOI URL |
[5] |
Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang, H. Lin, J.C. Wu, X. Wang, Nat. Commun. 6 (2015) 8340.
DOI URL |
[6] |
A. Al-Keisy, L. Ren, X. Xu, W. Hao, S.X. Dou, Y. Du, J. Phys. Chem. C 123 (2019) 517-525.
DOI |
[7] |
H. Huang, X. Li, J. Wang, F. Dong, P.K. Chu, T. Zhang, Y. Zhang, ACS Catal. 5 (2015) 4094-4103.
DOI URL |
[8] |
H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Rare Met. 27 (2008) 243-250.
DOI URL |
[9] |
D. Cui, L. Wang, K. Xu, L. Ren, L. Wang, Y. Yu, Y. Du, W. Hao, J. Mater. Chem. A 6 (2018) 2193-2199.
DOI URL |
[10] |
L. Wang, K. Xu, W. Cui, D. Lv, L. Wang, L. Ren, X. Xu, F. Dong, S. Dou, W. Hao, Y. Du, Adv. Funct. Mater. 29 (2019), 1808084.
DOI URL |
[11] |
W. Hao, Y. Gao, X. Jing, W. Zou, Y. Chen, T. Wang, J. Mater. Sci. Technol. 30 (2014) 192-196.
DOI URL |
[12] |
H. Deng, W. Hao, H. Xu, C. Wang, J. Phys. Chem. C 116 (2012) 1251-1255.
DOI URL |
[13] | K. Xu, L. Wang, X. Xu, S.X. Dou, W. Hao, Y. Du, Energy Storage Mater 19 (2019) 446-463. |
[14] |
J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4 (2014) 954-961.
DOI URL |
[15] |
M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, J. Am. Chem. Soc. 135 (2013) 10411-10417.
DOI URL |
[16] |
J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem. Soc. 134 (2012) 4473-4476.
DOI URL |
[17] |
K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J.J. Yin, J. Am. Chem. Soc. 135 (2013) 15750-15753.
DOI URL |
[18] |
H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 137 (2015) 6393-6399.
DOI URL |
[19] |
W. Yang, Y. Wen, R. Chen, D. Zeng, B. Shan, Phys. Chem. Chem. Phys. 16 (2014) 21349-21355.
DOI URL |
[20] | X. Zhang, C. Fan, Y. Wang, Y. Wang, Z. Liang, P. Han, Comput. Mater. Sci. 71 (2013) 135-145. |
[21] |
T. Jing, Y. Dai, X. Ma, W. Wei, B. Huang, Phys. Chem. Chem. Phys. 18 (2016) 7261-7268.
DOI URL PMID |
[22] |
X. Hu, J.-J. Zhang, S. Mukhnahallipatna, J. Hamann, M.J. Biggs, P. Agarwal, Fuel 82 (2003) 1675-1684.
DOI URL |
[23] |
P.G. Smirniotis, D.A. Peña, B.S. Uphade, Angew. Chem. Int. Ed. 40 (13) (2001) 2479-2482.
DOI URL |
[24] |
Z. Ai, W. Ho, S. Lee, L. Zhang, Environ. Sci. Technol. 43 (2009) 4143-4150.
DOI URL |
[25] | F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Hazard. Mater.219-220 (2012) 26-34. |
[26] | G. Kresse, J. Hafner, Phys. Rev., B Condens. Matter 47 (1993) 558-561. |
[27] |
G. Kresse, J. Hafner, Phys. Rev., B Condens. Matter 49 (1994) 14251-14269.
DOI URL |
[28] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[29] |
G. Kresse, J. Furthmüller, Phys. Rev., B Condens. Matter 54 (1996) 11169-11186.
DOI URL |
[30] |
P.E. Blöchl, Phys. Rev., B Condens. Matter 50 (1994) 17953-17979.
DOI URL |
[31] |
G. Kresse, D. Joubert, Phys. Rev., B Condens. Matter 59 (1999) 1758-1775.
DOI URL |
[32] |
J. Klimes, D.R. Bowler, A. Michaelides, Phys. Rev. B 83 (2011), 195131.
DOI URL |
[33] | K.G. Keramidas, G.P. Voutsas, P.I. Rentzeperis, Z. Kristallogr, Cryst. Mater. 205 (1993) 35-40. |
[34] |
M. Li, Y. Zhang, X. Li, Y. Wang, F. Dong, L. Ye, S. Yu, H. Huang, ACS Sustain. Chem. Eng. 6 (2018) 2395-2406.
DOI URL |
[35] |
G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B Environ. 18 (1998) 1-36.
DOI URL |
[36] |
M.F. Irfan, J.H. Goo, S.D. Kim, Appl. Catal. B Environ. 78 (2008) 267-274.
DOI URL |
[37] |
P. Garg, I. Choudhuri, B. Pathak, Phys. Chem. Chem. Phys. 19 (2017) 31325-31334.
DOI URL |
[38] |
O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 77 (2008), 125416.
DOI URL |
[39] |
M. Zhu, J.-K. Lai, I.E. Wachs, Appl. Catal. B Environ. 224 (2018) 836-840.
DOI URL |
[1] | Jiushan Cheng, Cong Wang, Yinfang Cui, Ying Sun, Ying Zuo. Visible Light Photocatalytic Properties and Thermochromic Phenomena of Nanostructured BiOCl Microspheres [J]. J. Mater. Sci. Technol., 2014, 30(11): 1130-1133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||