J. Mater. Sci. Technol. ›› 2022, Vol. 121: 227-235.DOI: 10.1016/j.jmst.2022.02.006
• Research Article • Previous Articles Next Articles
Liangpeng Zenga,b, Hongyuan Cuia, Huilan Penga, Xiaohang Suna, Yi Liua, Jingliang Huanga, Xinxing Lina, Hui Guoa,*(), Wei-Hua Lia,*(
)
Received:
2021-12-27
Revised:
2022-02-10
Accepted:
2022-02-24
Published:
2022-09-10
Online:
2022-03-09
Contact:
Hui Guo,Wei-Hua Li
About author:
liweihua3@mail.sysu.edu.cn (W.-H. Li).Liangpeng Zeng, Hongyuan Cui, Huilan Peng, Xiaohang Sun, Yi Liu, Jingliang Huang, Xinxing Lin, Hui Guo, Wei-Hua Li. Oleophobic interaction mediated slippery organogels with ameliorated mechanical performance and satisfactory fouling-resistance[J]. J. Mater. Sci. Technol., 2022, 121: 227-235.
Fig. 1. Schematic for design strategy and preparation of P(MMA-co-LMA) organogels. (a) An organogel was prepared by the polymerization of oleophilic (LMA) and oleophobic (MMA) monomers in presence of a crosslinker in an organic solvent (1,4-dioxane). After loftdrying and swelling processes, the hard-phase and soft-phase regions were simultaneously formed, giving rise to the organogel with excellent mechanical properties. (b) Photographs to demonstrate the macro-phase separation of P(MMA-co-LMA)(2-1) organogels: scaffold without solvent (left) and organogels with C16 (right).
Fig. 2. (a) Uniaxial tensile stress-strain curves of the organogels with various MMA/LMA molar ratios at C16-swelling equilibrium states. (b) Corresponding Young's modulus E, C16 content q, and work of extension W of the organogels. The error bars represent the standard deviation of the mean.
Fig. 3. (a) Tensile stretch rate dependence of the stretchability of P(MMA-co-LMA)(2-1) organogels at 25 °C, and (b) corresponding mechanical properties at various stretch rates. (c) Tensile stress-strain curves of P(MMA-co-LMA)(2-1) organogels at different temperatures ranging from 20 to 90 °C with a fixed strain rate of 100 mm min-1, and (d) corresponding mechanical properties. The error bars represent the standard deviation of the mean.
Fig. 4. (a) Consecutive loading-unloading cycles of P(MMA-co-LMA)(2-1) organogels with a maximum strain ranging from 50 to 300% with no waiting time interval. (b) Strain-history dependence of stress-strain recovery with varying time intervals at a designed strain of 300% at room temperature (~25 °C) and (c) corresponding hysteresis ratio and residual strain. (d) Total energy stored in the test P(MMA-co-LMA)(2-1) organogels at an extension ΔL, and fracture energy calculated by the total energy, crack size, and the specified initial thickness of the sample. (e) P(MMA-co-LMA)(2-1) organogels with a 3.5 mm width notch was stretched to different strains.
Fig. 5. (a) Static water contact angle and sliding angle on the surfaces of organogels, scaffold, and glass substrate. (b) Comparison of the easy-sliding of water, milk, ink, and honey to P(MMA-co-LMA)(2-1) scaffold, glass substrate, and C16 swollen P(MMA-co-LMA)(2-1) organogel: time-lapse images show pollutant sliding on P(MMA-co-LMA)(2-1) organogel, and pinning and streaking on bare (MMA-co-LMA)(2-1) scaffold and glass substrate.
Fig. 6. Anti-biofouling application of reinforced organogels: (a) BSA protein adsorption on different surfaces at 25 °C for 8 h. (b) Presence of biofilms after a washing step. Biofilms were grown in the low shear condition for 48 and 168 h, respectively, and analyzed using the UV-visible spectroscopy. The result from the bare glass was normalized as 1 for better comparison.
Fig. 7. Fluorescence microscope graphs of E. coli adhesion to various surfaces after the culture of 48 h (a1-h1) and 168 h (a2-h2), respectively. (a1, a2) Glass; (b1, b2) PDMS organogel; (c1, c2) PLMA organogel; (d1, d2) P(MMA-co-LMA)(1-2) organogel; (e1, e2) P(MMA-co-LMA)(1-1) organogel; (f1, f2) P(MMA-co-LMA)(2-1) organogel; (g1, g2) P(MMA-co-LMA)(3-1) organogel; (h1, h2) P(MMA-co-LMA)(2-1) scaffold.
[1] | A. M.C. Maan, A. H. Hofman, W.M. Vos, M. Kamperman, Recent developments and practical feasibility of polymer-based antifouling coatings, Adv. Funct. Mater. 30 (2020) 20 0 0936. |
[2] |
X. Han, J. Wu, X. Zhang, J. Shi, J. Wei, Y. Yang, B. Wu, Y. Feng, J. Mater. Sci. Technol. 61 (2021) 46-62.
DOI URL |
[3] | T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizen-berg, Nature 477 (2011) 4 43-4 47. |
[4] |
D. Wu, L. Ma, B. Liu, D. Zhang, B. Minhas, H. Qian, H.A. Terryn, J.M.C. Mol, J. Mater. Sci. Technol. 64 (2021) 57-65.
DOI URL |
[5] |
D.L. Beemer, W. Wang, A.K. Kota, J. Mater. Chem. A 4 (2016) 18253-18258.
DOI URL |
[6] | K. Golovin, A. Tuteja, Sci. Adv. 3 (2017) |
[7] | S. Amini, S. Kolle, L. Petrone, O. Ahanotu, S. Sunny, C.N. Sutanto, S. Hoon, L. Cohen, J.C. Weaver, J. Aizenberg, N. Vogel, A. Miserez, Science 357 (2017) 668-673. |
[8] |
C. Urata, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 3 (2015) 12626-12630.
DOI URL |
[9] | X. Lou, Y. Huang, X. Yang, H. Zhu, L. Heng, F. Xia, Adv. Funct. Mater. 30 (2020) |
[10] |
H. Liu, P. Zhang, M. Liu, S. Wang, L. Jiang, Adv. Mater. 25 (2013) 4 477-4 481.
DOI URL |
[11] | X. Yao, S.S. Dunn, P. Kim, M. Duffy, J. Alvarenga, J. Aizenberg, Angew. Chem. Int. Ed. 53 (2014) 4 418-4 422. |
[12] |
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X. Zhu, X. He, Nature 590 (2021) 594-599.
DOI URL |
[13] | H. Guo, T. Nakajima, D. Hourdet, A. Marcellan, C. Creton, W. Hong, T. Kurokawa, J.P. Gong, Adv. Mater. 31 (2019) |
[14] |
J.P. Gong, Soft Matter 6 (2010) 2583-2590.
DOI URL |
[15] |
H. Zhang, W. Niu, S. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 32640-32648.
DOI URL |
[16] | Z. Han, P. Zhou, C. Duan, Colloids Surf, Physicochem. Eng. Aspects 602 (2020). |
[17] |
X. Guo, C. Zhang, L. Shi, Q. Zhang, H. Zhu, J. Mater. Chem. A 8 (2020) 20346-20353.
DOI URL |
[18] | M. Ko, J. Jung, S.S. Hwang, J. Won, Polymer 205 (2020) |
[19] | K.P. Mineart, W.W. Walker, J. Mogollon-Santiana, I.A. Coates, C. Hong, B. Lee, Polymer (Guildf) 214 (2021) |
[20] | H. Guo, C. Mussault, A. Marcellan, D. Hourdet, N. Sanson, Macromol. Rapid Commun. 38 (2017) |
[21] |
H. Guo, N. Sanson, A. Marcellan, D. Hourdet, Macromolecules 49 (2016) 9568-9577.
DOI URL |
[22] |
H. Guo, C. Mussault, A. Brûlet, A. Marcellan, D. Hourdet, N. Sanson, Macro-molecules 49 (2016) 4295-4306.
DOI URL |
[23] |
Z. Iatridi, S.F. Saravanou, C. Tsitsilianis, Carbohydr. Polym. 219 (2019) 344-352.
DOI URL |
[24] |
A. Jover, F. Meijide, E. Rodríguez Núñez, J.V. Tato, Langmuir 18 (2002) 987-991.
DOI URL |
[25] |
X. Yao, Y. Hu, A. Grinthal, T.S. Wong, L. Mahadevan, J. Aizenberg, Nat Mater 12 (2013) 529-534.
DOI URL PMID |
[26] | P. Zhang, L. Lin, D. Zang, X. Guo, M. Liu, Small (2017) |
[27] |
J. Li, T. Kleintschek, A. Rieder, Y. Cheng, T. Baumbach, U. Obst, T. Schwartz, P.A. Levkin, ACS Appl. Mater. Interfaces 5 (2013) 6704-6711.
DOI URL |
[28] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
[29] |
Q. Xie, J. Pan, C. Ma, G. Zhang, Soft Matter 15 (2019) 1087-1107.
DOI URL |
[30] | C.M. Magin, S.P. Cooper, A.B. Brennan, Mater. Today 13 (2010) 36-44. |
[31] |
X. Su, M. Yang, D. Hao, X. Guo, L. Jiang, J. Colloid Interface Sci. 598 (2021) 104-112.
DOI URL |
[32] |
R.F. Brady, I.L. Singer, Biofouling 15 (2000) 73-81.
DOI URL PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||