J. Mater. Sci. Technol. ›› 2022, Vol. 119: 167-181.DOI: 10.1016/j.jmst.2021.11.074
• Review Article • Previous Articles Next Articles
Zhijia Zhanga, Yuefang Chena, Shihao Suna, Kai Suna, Heyi Suna, Hongwei Lia, Yuhe Yanga, Mengmeng Zhanga, Weijie Lib,*(), Shulei Chouc,*(
), Huakun Liub, Yong Jianga,*(
)
Received:
2021-10-27
Revised:
2021-11-12
Accepted:
2021-11-16
Published:
2022-08-20
Online:
2022-03-07
Contact:
Weijie Li,Shulei Chou,Yong Jiang
About author:
yjiang@tiangong.edu.cn (Y. Jiang).Zhijia Zhang, Yuefang Chen, Shihao Sun, Kai Sun, Heyi Sun, Hongwei Li, Yuhe Yang, Mengmeng Zhang, Weijie Li, Shulei Chou, Huakun Liu, Yong Jiang. Recent progress on three-dimensional nanoarchitecture anode materials for lithium/sodium storage[J]. J. Mater. Sci. Technol., 2022, 119: 167-181.
Fig. 1. Illustration of 3D nanoarchitecture anode materials for energy storage devices [61] and characteristics of 3D nanoarchitecture anode materials.
Fig. 2. (a) Synthesis schematic diagram of NPTNO by applying ionic liguid (IL); (b) and (c) HRTEM characterizations of NPTNO materials. (d) XRD patterns of two NPTNO materials from different calcination temperatures (700 and 850 °C). (e) and (f) Galvanostatic curves and Cycle performance of LNMO-TNO700 full-cell [81].
Fig. 3. (a) Schematic of the evolution of NP-Sb structure by chemical dealloying; SEM and digital images of (b) the coral-like NP-Sb70 and (c) the honeycomb-like NP-Sb80; (d) cycling performance of the NP-Sb70, NP-Sb80, Sb10, Sb30, Sb45, and commercial Sb powder electrodes [83].
Fig. 4. (a) Schematic illustration of the synthesis of A-NPA@oxides-Cu electrode; SEM images of (b) dealloyed NPA-Cu composite, (c) NPA@oxides-Cu composite, and (d) the final A-NPA@oxides-Cu electrode; (e) schematic of the flexible 3D nanoporous structure; (f) cycling performance of NPA@oxides-Cu and A-NPA@oxides-Cu [86].
Fig. 5. (a) Optical micrographs of 3D Cu foam and schematic illustration of 3D porous Sn-coated Cu foam [88]; (b) schematic illustration of the 3D porous Ni foam and MnNi3O4/Ni composite electrode [89]; (c) SEM image of Cu0.39Zn0.14Co2.47O4-ZnO/RGO/Cu electrode; (d) cycling performance of Cu0.39Zn0.14Co2.47O4-ZnO/RGO/Cu electrode [90]; (e) high magnification SEM image of 3D porous dendritic current collector [91].
Fig. 6. (a, b) The fabrication process and design principle of CuO nanoarray electrode; (c) schematic illustration of the microstructural evolution from CuO to R-CuO. (d) SEM images of R-CuO; (e) TEM image of R-CuO; (f) galvanostatic curves of R-CuO at varied currents; (g) electrochemical durability test of R-CuO [96]; (h) schematic diagram of the preparation of Bi/Ni, and redox potentials and chemical reaction of Ni and Bi3+ [97].
Fig. 7. (a) and (b) SEM image and schematic diagram of CNT/3D porous Ni foam electrode coated with carbon-coated Si/rGO nanostructures; (c) cycle performance and coulombic efficiency at 0.1 C for 50 cycles [100]; (d) and (e) coulombic efficiency at current densities of Li-ZMNF half cells; SEM images of (f) pristine NF electrode and (g) ZMMF electrode deposited Li for the first cycle [104].
Fig. 8. (a) Synthetic illustration for preparing Ru/PC [113]; (b) schematic and rate capacity of 3D-PC; (c) cycling performance of 3D-PC [111]; TEM and HRTEM images of the porous carbon with different preparation conditions: (d, e) HC-B, (f, g) HC-C [115].
Fig. 9. (a) Snapshots drawn by the program VESTA. Brown of MgO/carbon and MgO-removed structure; HRTEM image of (b) HC600(P100:0) and (c) HC600-1500(P100:0); (d) charge-discharge curves of different hard carbon; (e) rate tests of HC600-1500(F50:50) [116].
Fig. 10. (a) digital images of Sb2S5-GO with different states; (b) digital images of Sb2S5-GF-8 composites of different sizes; (c) SEM images of Sb2S5-GF-8; (d) LED panel powered by full cells; (e) cycling performance of composite electrodes [121]; (f) TEM image of graphene foam and (g) corresponding high magnification image; (h) schematic diagram of button battery structure; (i) cycling performance of N-doped graphene foam electrode [122].
Fig. 11. (a, b) SEM images, digital photo and TEM image of 3DGNW; (c) a solid-state pyrolysis process; (d) cycling test of 3DGNW electrodes [124]; (e) SEM images of graphene microspheres; electrochemical performance test of the nTiO2@GF electrode: (f) CV curves with different scan rate, (g) cycling performance [125].
Fig. 12. (a) Schematic of the structure of the battery; (b) SEM images of electrode microstructure [128]; (c) SEM image of GF/Si-2 electrode; (d) cycling performance of GF/Si-2 composite [129].
Fig. 13. (a) Schematic of MoO3/graphene composite; (b) SEM image of 3D porous graphene; (c) charge-discharge curves of MoO3/graphene composite [134]; (d) schematic illustration and cycling performance of nanoporous graphene [135].
Fig. 14. (a) Schematic of NPRP@RGO; (b) cycling performance of NPRP@RGO [138]; (c) schematic illustration of P@RGO synthesis; (d) TEM image of the P@RGO composite; (e) the flexibility test of the P@RGO composite; (f) cross-section image of P@RGO composite; (g, h) rate performance and charge-discharge curves of P@RGO composite [139].
Materials | Synthetic method | Battery type | Current Density | Cycles Number | Capacity (mAh g-1) | Capacity (%) retention | Electrolyte | Refs. |
---|---|---|---|---|---|---|---|---|
Cu0.39Zn0.14Co2.47O4ZnO/RGO/Cu | self-sacrificing templates | Li | 0.1 A g-1 | 50 | 1762 | — | LiPF6 /EC/DEC | [ |
Si/rGO | novel binder-free Si-based anode | Li | 130 mA g-1 | 900 | 2700 | 70 | LiPF6 /EC/EMC | [ |
Li6.4La3Zr2Al0.2O12 | plating/stripping process | Li | 5 mA g-1 | 1625 | 1600 | 78 | LiTFSI/LiNO3/DOL/DME | [ |
TiNb2O7(NPTNO) | sol-gel method | Li | 50 C | 1000 | 210 | 74 | — | [ |
3D-NP SiGe | chemical dealloyingmethod | Li | 1000 mA g-1 | 150 | 1158 | 75.6 | LiPF6/CMC | [ |
NPG/MnO2 | chemically dealloying method | Li | 500 mAg-1 | 240 | 600 | 63 | LiPF6 /EC/EDC | [ |
Mg2Si | magnesiothermic reduction | Li | 5 Ag-1 | 500 | 1292 | — | LiPF6 /EC/EDC | [ |
np-Ni@NiO/MnO | chemically dealloying method | Li | 100 mA g-1 | 200 | 1172 | 105 | LiPF6 /EC | [ |
Con@N-C-1 | template-sacrificed method | Li | 0.1C | 800 | 1587 | 63 | LiPF6EC/DEC | [ |
nTiO2@GF | chemical vapor deposition | Li | 20C | 100 | 204 | 96 | LiPF6 /EC/DMC | [ |
GF/Si-2 | Facile freeze-drying method | Li | 1 A g-1 | 1200 | 1170 | 90 | HCL/LiPF6 | [ |
MoO3/graphene | chemical vapor deposition | Li | 0.25 A g-1 | — | 710 | — | LiPF6 /EC/DMC | [ |
P2-Na2/3Ni1/3Mn1/2Ti1/6O2 | MgO-template technique | Na | — | 35 | 478 | 88 | LiC6 | [ |
CCs | High temperature poreclosing strategy | Na | 2C | 2000 | 360 | 71 | NaPF6/EC/DMC | [ |
HC-21-1400 | precisely chemical regulation | Na | 0.2C | 40 | 410 | 96 | — | [ |
Sb2S5 | hydrothermal co-assembly strategy | Na | 0.1 A g-1 | 300 | 845 | 91.6 | Na3(VO0.5)2(PO4)2F2/C | [ |
3DGNW | template strategy | Na | 0.1c | 1000 | 545 | 41 | LiPF6 /EC/DMC | [ |
N-doped carbon | ionothermal carbonization | Na | 0.1 C | 160 | 496 | 96 | NaClO4/EC/DEC/PC | [ |
Sb/C | solid-state reduction chemistry | Na | 300 mA g-1 | 200 | 436 | 98 | NaClO4 /PC/TCI | [ |
ZNP/C | direct annealing | Na | 0.5 A g-1 | 1000 | 359 | 93 | NaClO4 EC/DMC | [ |
Carbon tube | carbonization method | Na | 100 mA g-1 | 430 | 231 | 84 | NaClO4/EC/DEC | [ |
SnO2/Cu | cold-rolling and anodization | Na | 0.2 C | 200 | 326 | — | NaClO4/PC/FEC | [ |
Table 1. Summary on electrochemical characteristics of 3D nanoarchitecture anodes for LIBs and SIBs
Materials | Synthetic method | Battery type | Current Density | Cycles Number | Capacity (mAh g-1) | Capacity (%) retention | Electrolyte | Refs. |
---|---|---|---|---|---|---|---|---|
Cu0.39Zn0.14Co2.47O4ZnO/RGO/Cu | self-sacrificing templates | Li | 0.1 A g-1 | 50 | 1762 | — | LiPF6 /EC/DEC | [ |
Si/rGO | novel binder-free Si-based anode | Li | 130 mA g-1 | 900 | 2700 | 70 | LiPF6 /EC/EMC | [ |
Li6.4La3Zr2Al0.2O12 | plating/stripping process | Li | 5 mA g-1 | 1625 | 1600 | 78 | LiTFSI/LiNO3/DOL/DME | [ |
TiNb2O7(NPTNO) | sol-gel method | Li | 50 C | 1000 | 210 | 74 | — | [ |
3D-NP SiGe | chemical dealloyingmethod | Li | 1000 mA g-1 | 150 | 1158 | 75.6 | LiPF6/CMC | [ |
NPG/MnO2 | chemically dealloying method | Li | 500 mAg-1 | 240 | 600 | 63 | LiPF6 /EC/EDC | [ |
Mg2Si | magnesiothermic reduction | Li | 5 Ag-1 | 500 | 1292 | — | LiPF6 /EC/EDC | [ |
np-Ni@NiO/MnO | chemically dealloying method | Li | 100 mA g-1 | 200 | 1172 | 105 | LiPF6 /EC | [ |
Con@N-C-1 | template-sacrificed method | Li | 0.1C | 800 | 1587 | 63 | LiPF6EC/DEC | [ |
nTiO2@GF | chemical vapor deposition | Li | 20C | 100 | 204 | 96 | LiPF6 /EC/DMC | [ |
GF/Si-2 | Facile freeze-drying method | Li | 1 A g-1 | 1200 | 1170 | 90 | HCL/LiPF6 | [ |
MoO3/graphene | chemical vapor deposition | Li | 0.25 A g-1 | — | 710 | — | LiPF6 /EC/DMC | [ |
P2-Na2/3Ni1/3Mn1/2Ti1/6O2 | MgO-template technique | Na | — | 35 | 478 | 88 | LiC6 | [ |
CCs | High temperature poreclosing strategy | Na | 2C | 2000 | 360 | 71 | NaPF6/EC/DMC | [ |
HC-21-1400 | precisely chemical regulation | Na | 0.2C | 40 | 410 | 96 | — | [ |
Sb2S5 | hydrothermal co-assembly strategy | Na | 0.1 A g-1 | 300 | 845 | 91.6 | Na3(VO0.5)2(PO4)2F2/C | [ |
3DGNW | template strategy | Na | 0.1c | 1000 | 545 | 41 | LiPF6 /EC/DMC | [ |
N-doped carbon | ionothermal carbonization | Na | 0.1 C | 160 | 496 | 96 | NaClO4/EC/DEC/PC | [ |
Sb/C | solid-state reduction chemistry | Na | 300 mA g-1 | 200 | 436 | 98 | NaClO4 /PC/TCI | [ |
ZNP/C | direct annealing | Na | 0.5 A g-1 | 1000 | 359 | 93 | NaClO4 EC/DMC | [ |
Carbon tube | carbonization method | Na | 100 mA g-1 | 430 | 231 | 84 | NaClO4/EC/DEC | [ |
SnO2/Cu | cold-rolling and anodization | Na | 0.2 C | 200 | 326 | — | NaClO4/PC/FEC | [ |
[1] |
J. Lee, J. Moon, S.A. Han, J. Kim, V. Malgras, Y.U. Heo, H. Kim, S.M. Lee, H.K. Liu, S.X. Dou, Y. Yamauchi, M.S. Park, J.H. Kim, ACS Nano 13 (2019) 9607-9619.
DOI URL |
[2] |
J.L. Zhu, Q.C. He, Y. Liu, J.L. Key, S.X. Nie, M.M. Wu, P.K. Shen, J. Mater. Chem. A 7 (2019) 16999-17007.
DOI URL |
[3] |
X. Zhu, J.W. Ye, Y.F. Lu, X.L Jia, ACS Sustain. Chem. Eng. 7 (2019) 11241-11249.
DOI URL |
[4] |
J. Tang, S.B. Zheng, S.X. Jiang, J. Li, T. Guo, J.H. Guo, Rare Metals 40 (2021) 478-488.
DOI URL |
[5] |
Y.S. Xu, S.Y. Duan, Y.G. Sun, D.S. Bin, X.S. Tao, D. Zhang, Y. Liu, A.M. Cao, L.J. Wan, J. Mater. Chem. A 7 (2019) 4334-4352.
DOI URL |
[6] | Z.L. Li, Z.B. Xiao, P.Y. Li, X.P. Meng, R.H. Wang, Small 16 (2020) 1906114. |
[7] |
J. Ryu, B. Park, J. Kang, D. Hong, S.D. Kim, J.K. Yoo, J.W. Yi, S. Park, Y. Oh, ACS Nano 13 (2019) 14357-14367.
DOI URL |
[8] |
J. Yang, N. Yang, Q. Xu, L.S. Pearlie, Y.Z. Zhang, Y. Hong, Q. Wang, W.J. Wang, Q.Y. Yan, X.C. Dong, ACS Sustain. Chem. Eng. 7 (2019) 13217-13225.
DOI |
[9] |
C.X. Xu, J.J. Jiang, Rare Metals 40 (2021) 243-245.
DOI URL |
[10] |
Q.Y. Xia, M.Z. Ni, M.H. Chen, H. Xia, J. Mater. Chem. A 7 (2019) 6187-6196.
DOI URL |
[11] |
S.Y. Zhao, X.H. Tian, Y.K. Zhou, B. Ma, A. Natarajan, J. Energy Chem. 46 (2020) 22-29.
DOI URL |
[12] | K. Li, Z.Y. Hu, J.Z. Ma, S. Chen, D.X. Mu, J.T. Zhang, Adv. Mater. 31 (2019) 1902399. |
[13] |
X.F. Xu, K. Lin, D. Zhou, Q. Liu, X.Y. Qin, S.W. Wang, S. He, F.Y. Kang, B.H. Li, G.X. Wang, Chem 6 (2020) 902-918.
DOI URL |
[14] |
Z.W. Xu, H. Fu, K. Yao, X.T. Shen, Z. Li, L.C. Fu, J.F. Huang, J.Y. Li, Batteries Supercaps 1 (2018) 184-191.
DOI URL |
[15] |
Y.Q. Dai, G.C. Li, X.H. Li, H.J. Guo, Z.X. Wang, G.C. Yan, J.X. Wang, Rare Metals 39 (2020) 1364-1373.
DOI URL |
[16] |
L.Q. Lu, J.T.M. De Hosson, Y.T. Pei, Carbon 144 (2019) 713-723.
DOI URL |
[17] |
B.R. Liu, R.H. Bo, M. Taheri, I. Di Bernardo, N. Motta, H.J. Chen, T. Tsuzuki, G.H. Yu, A. Tricoli, Nano Lett 19 (2019) 4391-4399.
DOI URL |
[18] |
G.B. Xu, Y. Tian, L.W.Yang X.L.Wei, P.K. Chu, J. Power Sources 337 (2017) 180-188.
DOI URL |
[19] |
W.J. Liu, X.Z. Sun, X. Zhang, C. Li, K. Wang, W. Wen, Y.W. Ma, Rare Metals 40 (2021) 521-528.
DOI URL |
[20] |
J. Mei, T. Liao, G.A. Ayoko, J. Bell, Z.Q. Sun, Prog. Mater. Sci. 103 (2019) 596-677.
DOI URL |
[21] |
S. Feng, J.H. Song, C.Z. Zhu, Q.R. Shi, D. Liu, J.C. Li, D. Du, Q. Zhang, Y.H. Lin, ACS Appl. Mater. Interfaces 11 (2019) 5911-5918.
DOI URL |
[22] | S.H. Liu, Y.W. Wang, Y.F. Dong, Z.B. Zhao, Z.Y. Wang, J.S. Qiu, ChemElec- troChem 3 (2016) 38. |
[23] |
H. Liu, M.F. Chen, P. Zeng, X.L. Li, J. Luo, Y.F. Li, T. Xing, B.B. Chang, X.Y. Wang, Z.G. Luo, ACS Sustain. Chem. Eng. 8 (2020) 351-361.
DOI URL |
[24] |
S.L. Wang, Y. Liang, T.T. Dai, Y.L. Liu, Z.Y. Sui, X.L. Tian, Q. Chen, J. Colloid. Interface Sci. 591 (2021) 264-272.
DOI URL |
[25] |
X.T. Wang, Y. Yang, J.Z. Guo, Z.Y. Gu, E.H. Ang, Z.H. Sun, W.H. Li, H.J. Liang, X.L. Wu, J. Mater. Sci. Technol. 102 (2022) 72-79.
DOI URL |
[26] |
W.Z. Bao, C.E. Shuck, W.X. Zhang, X. Guo, Y. Gogotsi, G.X. Wang, ACS Nano 13 (2019) 11500-11509.
DOI URL |
[27] |
S.R. He, J.P. Zou, L.B. Chen, Y.J. Chen, Rare Metals 40 (2021) 374-382.
DOI URL |
[28] |
W.F. Miao, Y. Zhang, H.T. Li, Z.H. Zhang, L. Li, Z. Yu, W.M. Zhang, J. Mater. Chem. A 7 (2019) 5504-5512.
DOI URL |
[29] |
S.H. Sun, Z.J. Zhang, L. Yan, C.Q. Li, H. Li, Z.J. Qiao, Z.Y. Yu, W.J. Li, N. Wang, Y. Jiang, J. Porous Mat. 29 (2022) 249-255.
DOI URL |
[30] |
Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, J. Energy Chem. 66 (2022) 429-439.
DOI URL |
[31] |
Y. Kim, H. Han, Y. Noh, J. Bae, M.H. Ham, W.B. Kim, ChemSusChem 12 (2019) 824-829.
DOI URL |
[32] |
Q. Zhao, Q.Z. Zhu, J. Miao, P. Zhang, P.B. Wan, L.Z. He, B. Xu, Small 15 (2019) 1904293.
DOI URL |
[33] |
D. Carlstedt, E. Marklund, L.E. Asp, Compos. Sci. Technol. 169 (2019) 26-33.
DOI |
[34] |
H.Y. Xu, C. Bae, J. Power Sources 430 (2019) 67-73.
DOI URL |
[35] |
K. Shen, J.W. Ding, S.B. Yang, Adv. Energy Mater. 8 (2018) 1800408.
DOI URL |
[36] |
Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang, J. Wang, C.L. Lü, X.L. Wu, Adv. Energy Mater. 8 (2018) 1703252.
DOI URL |
[37] |
Y. Ding, X.L. Guo, Y.M. Qian, G.H. Yu, ACS Central Sci 6 (2020) 2287-2293.
DOI PMID |
[38] |
B. Xiang, W.L. An, J.J. Fu, S.X. Mei, S.G. Guo, X.M. Zhang, B. Gao, K.C. Paul, Rare Metals 40 (2021) 383-392.
DOI URL |
[39] |
L. Yang, H.N. Liao, Y. Tian, W.N. Hong, P. Cai, C. Liu, Y.C. Yang, G.Q. Zou, H.S. Hou, X.B. Ji, Small Methods 3 (2019) 1800533.
DOI URL |
[40] |
F.F. Liu, X.L. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Adv. Funct. Mater. 28 (2018) 1800394.
DOI URL |
[41] |
Z. Yang, X.H. Liu, X.X. He, W.H. Lai, L. Li, Y. Qiao, S.L. Chou, M.H. Wu, Adv. Funct. Mater. 31 (2021) 2006457.
DOI URL |
[42] |
W.C. Zhang, J. Lu, Z.P. Guo, Mater. Today 50 (2021) 400-417.
DOI URL |
[43] |
Y. Jiang, Y. Wu, Y.X. Chen, Z.Y. Qi, J.N. Shi, L. Gu, Y. Yu, Small 14 (2018) 1703471.
DOI URL |
[44] |
M.G. Zhang, H. Mei, P. Chang, L.F. Cheng, J. Mater. Chem. A 8 (2020) 10670-10694.
DOI URL |
[45] |
S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater. 10 (2020) 1902485.
DOI URL |
[46] |
Z.J. Zhang, W.J. Li, S.L. Chou, C. Han, H.K. Liu, S.X. Dou, J. Mater. Sci. Technol. 68 (2021) 140-146.
DOI URL |
[47] |
Z.J. Zhang, Y.X. Wang, S.L. Chou, H.J. Li, H.K. Liu, J.Z. Wang, J. Power Sources 280 (2015) 107-113.
DOI URL |
[48] |
Z.J. Zhang, Z.Y. Ren, S.F. Zhang, D. Yuan, Y.H. Dou, Z.J. Qiao, Z.Y. Yu, J.L. Kang, W.J. Li, S.L. Chou, Mater. Chem. Front. 4 (2020) 2976-2981.
DOI URL |
[49] | H. Zhang, W.Q. Zhao, M.C. Zou, Y.S. Wang, Y.J. Chen, L. Xu, H.S. Wu, A.Y. Cao, Adv. Energy Mater. 8 (2018) 180 0 013. |
[50] |
T.F. Liu, Y.P. Zhang, Z.G. Jiang, X.Q. Zeng, J.P. Ji, Z.H. Li, X.H. Gao, M.H. Sun, Z. Lin, M. Ling, J.C. Zheng, C.D. Liang, Energy Environ. Sci. 12 (2019) 1512-1533.
DOI URL |
[51] | T. Wang, Q.S. Zhang, J. Zhong, M.X. Chen, H.L. Deng, J.H. Cao, L. Wang, L.L. Peng, J. Zhu, B.A. Lu, Adv. Energy Mater. 11 (2021) 2100448. |
[52] |
C.P. Wu, K.X. Xie, J.P. He, Q.P. Wang, J.M. Ma, S. Yang, Q.H. Wang, Rare Metals 40 (2021) 48-56.
DOI URL |
[53] |
P. Xue, N.N. Wang, Y.X. Wang, Y.H. Zhang, Y.L. Liu, B. Tang, Z.C. Bai, S.X. Dou, Carbon 134 (2018) 222-231.
DOI URL |
[54] |
J.Y. Zhang, XH. Yao, R.K. Misra, Q. Cai, Y.L. Zhao, J. Mater. Sci. Technol. 44 (2020) 237-257.
DOI |
[55] |
H.T. Sun, L. Mei, J.F. Liang, Z.P. Zhao, C. Lee, H.L. Fei, M.N. Ding, J. Lau, M.F. Li, C. Wang, X. Xu, G.L. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X.F. Duan, Science 356 (2017) 599-604.
DOI URL |
[56] | R. Zhang, S.W. Wen, N. Wang, K.Q. Qin, E.Z. Liu, C.S. Shi, N.Q. Zhao, Adv. En- ergy Mater. 8 (2018) 1800914. |
[57] |
R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A.P. Cohn, C.L. Pint, Nano Lett 17 (2017) 1863-1869.
DOI URL |
[58] |
X.Y. Liu, W.L. Huang, D.D. Wang, J.H. Tian, Z.Q. Shan, J. Power Sources 355 (2017) 211-218.
DOI URL |
[59] |
W. Yang, W. Yang, L.B. Dong, G.J. Shao, G.X. Wang, X.W. Peng, Nano Energy 80 (2021) 105563.
DOI URL |
[60] |
R.P. Joshi, J. Eickholt, L. Li, M. Fornari, V. Barone, J.E. Peralta, ACS Appl. Mater. Interfaces 11 (2019) 18494-18503.
DOI URL |
[61] |
X. Wu, G. He, Y. Ding, ChemSusChem 13 (2020) 3287.
DOI URL |
[62] |
Y. Fang, X.Y. Yu, X.W. Lou, Matter 1 (2019) 90-114.
DOI URL |
[63] |
W.X. Shang, W.T. Yu, P. Tan, B. Chen, H.R. Xu, M. Ni, J. Power Sources 421 (2019) 6-13.
DOI URL |
[64] |
V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja, K. Vikrant, K.H. Kim, U.K. Tiwari, A. Deep, Coord. Chem. Rev. 393 (2019) 48-78.
DOI URL |
[65] | J. Yan, S.H. Li, B.B. Lan, Y.C. Wu, P.S. Lee, Adv. Funct. Mater. 30 (2020) 1902564. |
[66] |
S.H. Qi, D.X. Wu, Y. Dong, J.Q. Liao, C.W. Foster, C. O’Dwyer, Y.Z. Feng, C.T. Liu, J.M. Ma, Chem. Eng. J. 370 (2019) 185-207.
DOI URL |
[67] |
C.Y. Yang, P.F. Zhang, A. Nautiyal, S.H. Li, N. Liu, J.L. Yin, K.L. Deng, X.Y. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 4258-4267.
DOI URL |
[68] |
Y.Q. Yang, Q.Y. Liu, H.Y. Wang, H. Wen, Z.K. Peng, K. Xiang, C.Y. Gao, X.L. Wu, B.J. Li, Z.Y. Liu, ACS Omega 6 (2021) 10234-10241.
DOI URL |
[69] |
J.E. Zhou, Q.Y. Yang, Q.Y. Xie, H. Ou, X.M. Lin, A. Zeb, L. Hu, Y.B. Wu, G.Z. Ma, J. Mater. Sci. Technol. 96 (2022) 262-284.
DOI URL |
[70] |
X.F. Wu, J.W. Li, Y. Li, Z.H. Wen, Chem. Eng. J. 409 (2021) 128161.
DOI URL |
[71] |
Y.X. Gao, Y. Ding, Chem.-Eur. J. 26 (2020) 8845-8856.
DOI URL |
[72] |
X. Wu, G. He, Y. Ding, Electrochem. Energy Rev. 3 (2020) 541-580.
DOI URL |
[73] | X.W. Lv, C.C. Weng, Y.P. Zhu, Z.Y. Yuan, Small 17 (2021) 2005304. |
[74] |
Q.W. Li, G. He, Y. Ding, Chem.-Eur. J. 27 (2021) 6407-6421.
DOI URL |
[75] |
H.H. Li, A. Saini, R.Y. Xu, N. Wang, X.X. Lv, Y.P. Wang, T. Yang, L. Chen, H.B. Jiang, Rare Metals 39 (2020) 1072-1081.
DOI URL |
[76] |
B. Wang, Y. Peng, F. Yuan, Q. Liu, L.Z. Sun, P. Zhang, Q.J. Wang, Z.J. Li, Y.A. Wu, J. Power Sources 484 (2021) 229244.
DOI URL |
[77] |
Y.J. Wang, J.Q. Tian, Z.D. Sun, L. Wang, R.L. Xu, M. Li, Z.H. Chen, Renew. Sust. Energ. Rev. 131 (2020) 110015.
DOI URL |
[78] |
R.C.K. Reddy, J. Lin, Y.Y. Chen, C.H. Zeng, X.M. Lin, Y.P. Cai, C.Y. Su, Coord. Chem. Rev. 420 (2020) 213434.
DOI URL |
[79] |
Z.G. Liu, R. Du, X.X. He, J.C. Wang, Y. Qiao, L. Li, S.L. Chou, ChemSusChem 14 (2021) 3724-3743.
DOI URL |
[80] |
H.W. Li, S.F. Zhang, H. Liu, Z.J. Qiao, Z.Y. Yu, Z.J. Zhang, Electrochim. Acta 368 (2021) 137628.
DOI URL |
[81] | R.M. Tao, G. Yang, E.C. Self, J.Y. Liang, J.R. Dunlap, S. Men, C.L. Do-Thanh, J. Liu, Y.M. Zhang, S. Zhao, H. Lyu, A.P. Sokolov, J. Nanda, X.G. Sun, S. Dai, Small 16 (2020) 2001884. |
[82] |
J. Kang, A. Hirata, L. Chen, S. Zhu, T. Fujita, M. Chen, Angew. Chem. Int. Edit. 54 (2015) 8100-8104.
DOI URL |
[83] |
S. Liu, J.K. Feng, X.F. Bian, J. Liu, H. Xu, Energy Environ. Sci. 9 (2016) 1229-1236.
DOI URL |
[84] |
J.L. Kang, A. Hirata, H.J. Qiu, L.Y. Chen, X.B. Ge, T. Fujita, M.W. Chen, Adv. Mater. 26 (2014) 269-272.
DOI URL |
[85] |
S.F. Zhang, Z.J. Zhang, H.W. Li, Z.Y. Yu, Q. Huang, Z.J. Qiao, L.J. Zong, L. Yan, J.X. Li, J.L. Kang, Chem. Eng. J. 383 (2020) 123097.
DOI URL |
[86] |
S.F. Zhang, Z.J. Zhang, J.L. Kang, Q. Huang, Z.Y. Yu, Z.J. Qiao, Y.D. Deng, J.X. Li, W. Wang, Electrochim. Acta 320 (2019) 134542.
DOI URL |
[87] |
F. Pei, A. Fu, W.B. Ye, J. Peng, X.L. Fang, M.S. Wang, N.F. Zheng, ACS Nano 13 (2019) 8337-8346.
DOI URL |
[88] |
H. Park, J.H. Um, H. Choi, W.S. Yoon, Y.E. Sung, H. Choe, Appl. Surf. Sci. 399 (2017) 132-138.
DOI URL |
[89] |
Z.X. Zhang, P.G. He, X.W. Li, Z.B. Yang, Y.J. Fu, Z.Y Lin, J. Alloy. Compd. 758 (2018) 38-44.
DOI URL |
[90] |
J.L. Niu, H.J. Peng, C.H. Zeng, X.M. Lin, P. Sathishkumar, Y.P. Cai, A.W. Xu, Chem. Eng. J. 336 (2018) 510-517.
DOI URL |
[91] |
X.L. Huang, D. Xu, S. Yuan, D.L. Ma, S. Wang, H.Y. Zheng, X.B. Zhang, Adv. Mater. 26 (2014) 7264-7270.
DOI URL |
[92] |
X.T. Wang, Y. Yang, J.Z. Guo, Z.Y. Gu, E.H. Ang, Z.H. Sun, W.H. Li, H.J. Liang, X.L. Wu, J. Mater. Sci. Technol. 102 (2022) 72-79.
DOI URL |
[93] |
Z. Zhang, Y. Huang, X. Li, Z.M. Zhou, J. Mater. Sci. Technol. 102 (2022) 46-55.
DOI URL |
[94] |
Z.Z. Wang, M.L. Sun, J.F. Ni, L. Li, J. Mater. Sci. Technol. 53 (2020) 126-131.
DOI URL |
[95] |
X.L. Huang, D. Xu, S. Yuan, D.L. Ma, S. Wang, H.Y. Zheng, X.B. Zhang, Adv. Mater. 26 (42) (2014) 7264-7270.
DOI URL |
[96] |
J.F. Ni, Y. Jiang, F.X. Wu, J. Maier, Y. Yu, L. Li, Adv. Funct. Mater. 28 (2018) 1707179.
DOI URL |
[97] |
L.B. Wang, C.C. Wang, F.J. Li, F.Y. Cheng, J. Chen, Chem. Commun. 54 (2018) 38-41.
DOI URL |
[98] |
T. Jin, Q.Q. Han, L.F. Jiao, Adv. Mater. 32 (2020) 1806304.
DOI URL |
[99] |
X. Ma, Z.J. Zhang, J.M. Wang, S.H. Sun, S.F. Zhang, S. Yuan, Z.J. Qiao, Z.Y. Yu, J.L. Kang, W.J. Li, Rare Metals 40 (2021) 2802-2809.
DOI URL |
[100] |
J.B. Chang, X.K. Huang, G.H. Zhou, S.M. Cui, S. Mao, J.H. Chen, Nano Energy 15 (2015) 679-687.
DOI URL |
[101] |
D.S. Jung, T.H. Hwang, S.B. Park, W. Choi, Nano Lett 13 (2013) 2092-2097.
DOI PMID |
[102] |
J.M. Wang, Z.J. Zhang, S.H. Sun, S. Yuan, W.J. Li, Z.J. Qiao, Z.Y. Yu, J.L. Kang, Surf. Innov. 9 (2021) 207-213.
DOI URL |
[103] |
X. Su, Q.L. Wu, J.C. Li, X.C. Xiao, A. Lott, W.Q. Lu, B.W. Sheldon, J. Wu, Adv. Energy Mater. 4 (2014) 1300882.
DOI URL |
[104] |
C.Z. Sun, Y.P. Li, J. Jin, J.H. Yang, Z.Y. Wen, J. Mater. Chem. A 7 (2019) 7752-7759.
DOI URL |
[105] |
M.Q. Zhu, B. Li, S.M. Li, Z.G. Du, Y.J. Gong, S.B. Yang, Adv. Energy Mater. 8 (2018) 1703505.
DOI URL |
[106] |
K.R. Adair, M. Iqbal, C.H. Wang, Y. Zhao, M.N. Banis, R.Y. Li, L. Zhang, R. Yang, S.G. Lu, X.L. Sun, Nano Energy 54 (2018) 375-382.
DOI URL |
[107] |
J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, L. Huang, Chem. Eng. J. 430 (2022) 132741.
DOI URL |
[108] |
H. Liu, X.X. Liu, W. Li, X. Guo, Y. Wang, G.X. Wang, D.Y. Zhao, Adv. Energy Mater. 7 (2017) 1700283.
DOI URL |
[109] |
H.L. Wang, B.Z. Wu, X.K. Wu, Q.Q. Zhuang, T. Liu, Y. Pan, G.J. Shi, H.M. Yi, P. Xu, Z.N. Xiong, S.L. Chou, B.F Wang, Small 18 (2022) 2101680.
DOI URL |
[110] |
B. Xiao, T. Rojo, X. Li, ChemSusChem 12 (2019) 133-144.
DOI URL |
[111] |
C.L. Zhou, D.K. Wang, A. Li, E. Pan, H.Y. Liu, X.H. Chen, M.Q. Jia, H.H. Song, Chem. Eng. J. 380 (2020) 122457.
DOI URL |
[112] |
J.S. Shi, H.M. Cui, J.G. Xu, N.F. Yan, Y.W. Liu, Chem. Eng. J. 389 (2020) 124459.
DOI URL |
[113] |
R. Ding, Q. Chen, Q. Luo, L.X. Zhou, Y. Wang, Y. Zhang, G.Y. Fan, Green Chem 22 (2020) 835-842.
DOI URL |
[114] | K. Zhang, Q. He, F.Y. Xiong, J.P. Zhou, Y. Zhao, L.Q. Mai, L.N. Zhang, Nano En- ergy 77 (2020) 105018. |
[115] |
W.Z. Li, R. Zhang, Z. Chen, B.B. Fan, K.K. Xiao, H. Liu, P. Gao, J.F. Wu, C.J. Tu, J.L. Liu, Small 17 (2021) 2100397.
DOI URL |
[116] |
A. Kamiyama, K. Kubota, D. Igarashi, Y. Youn, Y. Tateyama, H. Ando, K. Gotoh, S. Komaba, Angew. Chem. Int. Edit. 60 (2021) 5114-5120.
DOI URL |
[117] |
S. Qiu, L.F. Xiao, M.L. Sushko, K.S. Han, Y.Y. Shao, M.Y. Yan, X.X. Liang, L.Q. Mai, J.W. Feng, Y.L. Cao, X.P. Ai, H.X. Yang, J. Liu, Adv. Energy Mater. 7 (2017) 1700403.
DOI URL |
[118] |
J. Bai, X. Chen, E. Olsson, H.M. Wu, S.Q. Wang, Q. Cai, C.Q. Feng, J. Mater. Sci. Technol. 50 (2020) 92-102.
DOI URL |
[119] |
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S.J. Guo, H. Yang, Adv. Energy Mater. 8 (2018) 1800171.
DOI URL |
[120] |
S.H. Liu, Z.P. Lin, F. Xiao, J.K. Zhang, D.H. Wang, X.H. Chen, Y.M. Zhao, J.T. Xu, Chem. Eng. J. 389 (2020) 124377.
DOI URL |
[121] |
Y.Y. Lu, N. Zhang, S. Jiang, Y.D. Zhang, M. Zhou, Z.L. Tao, L.A. Archer, J. Chen, Nano Lett 17 (2017) 3668-3674.
DOI URL |
[122] |
H. Yu, D.L. Ye, T. Butburee, L.Z. Wang, M. Dargusch, ACS Appl. Mater. Interfaces 8 (2016) 2505-2510.
DOI URL |
[123] |
L. Zhu, X.X. Yang, Y.H. Xiang, P. Kong, X.W. Wu, Rare Metals 40 (2021) 1383-1390.
DOI URL |
[124] |
X.Y. Liu, D.L. Chao, D.P. Su, S.K. Liu, L. Chen, C.X. Chi, J.Y. Lin, Z.X. Shen, J.P. Zhao, L.Q. Mai, Y. Li, Nano Energy 37 (2017) 108-117.
DOI URL |
[125] |
S.Y. Wang, G.K. Wang, X. Zhang, Y.L. Tang, J.W. Wu, X. Xiang, X.T. Zu, Q.K. Yu, Carbon 120 (2017) 103-110.
DOI URL |
[126] |
D. Datta, J.W. Li, N. Koratkar, V.B. Shenoy, Carbon 80 (2014) 305-310.
DOI URL |
[127] |
R. Mukherjee, A.V. Thomas, D. Datta, E. Singh, J. Li, O. Eksik, V.B. Shenoy, N. Koratkar, Nat. Commun. 5 (2014) 3710.
DOI PMID |
[128] |
T.M. Paronyan, A.K. Thapa, A. Sherehiy, J.B. Jasinski, J.S.D. Jangam, Sci. Rep. 7 (2017) 39944.
DOI PMID |
[129] |
Y. Ma, R. Younesi, R.J. Pan, C.J. Liu, J.F. Zhu, B.Q. Wei, K. Edström, Adv. Funct. Mater. 26 (2016) 6797-6806.
DOI URL |
[130] |
Z.L. Ma, S. Dou, A.L. Shen, L. Tao, L.M. Dai, S.Y. Wang, Angew. Chem. Int. Edit. 54 (2015) 1888-1892.
DOI URL |
[131] |
Z.J. Zhang, J. Zhao, Z.J. Qiao, J.M. Wang, S.H. Sun, W.X. Fu, X.Y. Zhang, Z.Y. Yu, Y.H. Dou, J.L. Kang, D. Yuan, Y.Z. Feng, J.M. Ma, Rare Metals 40 (2021) 393-399.
DOI URL |
[132] | Y. Ito, Y. Tanabe, H.-J. Qiu, K. Sugawara, S. Heguri, N.H. Tu, K.K. Huynh, T. Fu- jita, T. Takahashi, K. Tanigaki, M. Chen, Angew. Chem. Int. Edit. 53 (2014) 4 822-4 826. |
[133] |
X.X. Liu, C. Tian, H.Y. Hou, J. Lan, Surf. Innov. (2021), doi: 10.1680/jsuin.21.00026.
DOI |
[134] |
J.H. Han, P. Liu, Y. Ito, X.W. Guo, A. Hirata, T. Fujita, M.W. Chen, Nano Energy 45 (2018) 273-279.
DOI URL |
[135] | L.Q. Lu, F. Pei, T. Abeln, Y.T. Pei, Carbon 157 (2020) 437-447. |
[136] |
F.X. Wang, Z.C. Liu, P.P. Zhang, H.Y. Li, W.B. Sheng, T. Zhang, R. Jordan, Y.P. Wu, X.D. Zhuang, X.L. Feng, Small 13 (2017) 1702449.
DOI URL |
[137] |
C.B. Sun, Y.Q. Liu, J.Z. Sheng, Q.K. Huang, W. Lv, G.M. Zhou, H.M. Cheng, Mater. Horiz. 7 (2020) 2487-2518.
DOI URL |
[138] |
S. Liu, H. Xu, X.F. Bian, J.K. Feng, J. Liu, Y.H. Yang, C. Yuan, Y.L. An, R.H. Fan, L.J. Ci, ACS Nano 12 (2018) 7380-7387.
DOI URL |
[139] |
Y.H. Liu, A.Y. Zhang, C.F. Shen, Q.Z. Liu, X. Cao, Y.Q. Ma, L. Chen, C. Lau, T.C. Chen, F. Wei, C.W. Zhou, ACS Nano 11 (2017) 5530-5537.
DOI URL |
[140] | C.Y. Zhang, S. Liu, G.J. Li, C.J. Zhang, X.L. Liu, J.Y. Luo, Adv. Mater. 30 (2018) 1801328. |
[141] |
Y.H. Yang, S. Liu, X.F. Bian, J.K. Feng, Y.L. An, C. Yuan, ACS Nano 12 (2018) 2900-2908.
DOI URL |
[142] |
X.W. Guo, J.H. Han, L. Zhang, P. Liu, A. Hirata, L.Y. Chen, T. Fujita, M.W. Chen, Nanoscale 7 (2015) 15111-15116.
DOI URL |
[143] |
J.B. Cook, H.S. Kim, T.C. Lin, S. Robbennolt, E. Detsi, B.S. Dunn, S.H. Tolbert, ACS Appl. Mater. Interfaces 9 (2017) 19063-19073.
DOI URL |
[144] | S.Y. Wang, G.K. Wang, X. Zhang, Y.L. Tang, J.W. Wu, X. Xiang, X.T. Zu, Q.K. Yu, Carbon 120 (2017) 103-110. |
[145] |
Y. Ma, R. Younesi, R.J. Pan, C.J. Liu, J.F. Zhu, B.Q. Wei, K. Edström, Adv. Funct. Mater. 26 (2016) 6797-6806.
DOI URL |
[146] | Y.Q. Li, Y.X. Lu, Q. Meng, A.C.S. Jensen, Q.Q. Zhang, Q.H. Zhang, Y.X. Tong, Y.R. Qi, L. Gu, M.M. Titirici, Y.S. Hu, Adv. Energy Mater. 9 (2019) 1902852. |
[147] |
Q.S. Meng, Y.X. Lu, F.X. Ding, Q.Q. Zhang, L.Q. Chen, Y.S. Hu, ACS Energy Lett 4 (2019) 2608-2612.
DOI URL |
[148] |
J. Cao, C. Chen, Q. Zhao, N. Zhang, Q.Q. Lu, X.Y. Wang, Z. Niu, J. Chen, Adv. Mater. 28 (2016) 9629.
DOI URL |
[149] | A. Mehmood, G. Ali, B. Koyutürk, J. Pampel, K.Y. Chung, T.P. Fellinger, Energy Storage Mater 28 (2020) 101-111. |
[150] |
B. Selvaraj, S.S. Huang, C.E. Wu, Y.H. Lin, C.C. Wang, Y.F. Song, M.L. Lu, H.S. Sheu, N.L. Wu, ACS Appl. Energy Mater. 1 (2018) 2317-2325.
DOI URL |
[151] |
C.L. Yan, X. Gu, L. Zhang, Y. Wang, L.T. Yan, D.D. Liu, L.J. Li, P.C. Dai, X.B. Zhao, J. Mater. Chem. A 6 (2018) 17371-17377.
DOI URL |
[152] | C.W. Wang, J.F. Huang, J.Y. Li, L.Y. Cao, Q. Chen, C. Qian, S.Y. Chen, ChemElec- troChem 7 (2020) 201-211. |
[153] |
H.D. Bian, J. Zhang, M.F. Yuen, W.P. Kang, Y.W. Zhan, D.Y.W. Yu, Z.T. Xu, Y.Y. Li, J. Power Sources 307 (2016) 634-640.
DOI URL |
[1] | Huijun Li, Xiaomin Wang, Zhenxin Zhao, Rajesh Pathak, Siyue Hao, Xiaoming Qiu, Qiquan Qiao. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage [J]. J. Mater. Sci. Technol., 2022, 99(0): 184-192. |
[2] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[3] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[4] | Chengcheng Huang, Yiwen Liu, Runtian Zheng, Zhengwei Yang, Zhonghao Miao, Junwei Zhang, Xinhao Cai, Haoxiang Yu, Liyuan Zhang, Jie Shu. Interlayer gap widened TiS2 for highly efficient sodium-ion storage [J]. J. Mater. Sci. Technol., 2022, 107(0): 64-69. |
[5] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[6] | Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion [J]. J. Mater. Sci. Technol., 2022, 103(0): 15-28. |
[7] | Yadong Liu, Cheng Tang, Weiwei Sun, Guanjia Zhu, Aijun Du, Haijiao Zhang. In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 8-15. |
[8] | Shuhua Hao, Yupeng Xing, Peiyu Hou, Gang Zhao, Jinzhao Huang, Shipeng Qiu, Xijin Xu. Rational construction of phosphate layer to optimize Cu-regulated Fe3O4 as anode material with promoted energy storage performance for rechargeable Ni-Fe batteries [J]. J. Mater. Sci. Technol., 2022, 108(0): 133-141. |
[9] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
[10] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[11] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
[12] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[13] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[14] | Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 68-87. |
[15] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||