J. Mater. Sci. Technol. ›› 2022, Vol. 119: 182-189.DOI: 10.1016/j.jmst.2021.12.038
• Research Article • Previous Articles Next Articles
Liang Xu, Lei Su, Hongjie Wang(), Hongfei Gao, Pengfei Guo, Min Niu, Kang Peng, Lei Zhuang, Zhiwei Dai
Received:
2021-10-19
Revised:
2021-12-11
Accepted:
2021-12-20
Published:
2022-03-05
Online:
2022-03-05
Contact:
Hongjie Wang
About author:
* E-mail address: hjwang@xjtu.edu.cn (H. Wang).Liang Xu, Lei Su, Hongjie Wang, Hongfei Gao, Pengfei Guo, Min Niu, Kang Peng, Lei Zhuang, Zhiwei Dai. High-entropy Sm2B2O7 (B=Ti, Zr, Sn, Hf, Y, Yb, Nb, and Ta) oxides with highly disordered B-site cations for ultralow thermal conductivity[J]. J. Mater. Sci. Technol., 2022, 119: 182-189.
Composition | Abbreviation | Molar ratio of raw materials |
---|---|---|
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | Sm2O3: HfO2: SnO2: TiO2: ZrO2=2: 1: 1: 1: 1 |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | Sm2O3: HfO2: Nb2O5: SnO2: TiO2: ZrO2=5: 2: 1: 2: 2 |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | Sm2O3: Nb2O5: SnO2: TiO2: Y2O3: ZrO2=5: 1: 2: 2: 1: 2 |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | Sm2O3: Nb2O5: Ta2O5: Yb2O3: Y2O3: ZrO2=5: 1: 1: 1:1: 2 |
Table 1. Compositions and molar ratio of raw materials of all specimens in this study.
Composition | Abbreviation | Molar ratio of raw materials |
---|---|---|
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | Sm2O3: HfO2: SnO2: TiO2: ZrO2=2: 1: 1: 1: 1 |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | Sm2O3: HfO2: Nb2O5: SnO2: TiO2: ZrO2=5: 2: 1: 2: 2 |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | Sm2O3: Nb2O5: SnO2: TiO2: Y2O3: ZrO2=5: 1: 2: 2: 1: 2 |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | Sm2O3: Nb2O5: Ta2O5: Yb2O3: Y2O3: ZrO2=5: 1: 1: 1:1: 2 |
Fig. 1. (a) Atomic model of (a) ideal 1/8 of a high-entropy pyrochlore unit cell and (b) a high-entropy fluorite unit cell; (c) XRD patterns of S4TM, S5TM, Y-S5TM and YY-S5TM samples prepared by calcined at 1500 °C for 20 h.
Composition | Abbreviation | Calculated lattice parameter (Å) | RB-average | RA/RB | Structure type |
---|---|---|---|---|---|
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | 10.453 | 0.681 | 1.584 | Pyrochlore |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | 10.450 | 0.673 | 1.603 | Pyrochlore |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | 10.464 | 0.711 | 1.518 | Pyrochlore |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | 5.287 | 0.754 | 1.432 | Fluorite |
Table 2. Calculated lattice parameters, cations radii and ratio, and crystal structure of the high-entropy Sm2B2O7 oxides.
Composition | Abbreviation | Calculated lattice parameter (Å) | RB-average | RA/RB | Structure type |
---|---|---|---|---|---|
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | 10.453 | 0.681 | 1.584 | Pyrochlore |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | 10.450 | 0.673 | 1.603 | Pyrochlore |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | 10.464 | 0.711 | 1.518 | Pyrochlore |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | 5.287 | 0.754 | 1.432 | Fluorite |
Fig. 2. Typical SEM micrographs and polished surface EDS scanning of the high-entropy Sm2B2O7 oxides, (a) Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 (S4TM); (b) Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 (S5TM); (c) Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 (Y-S5TM); (d) Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 (YY-S5TM).
Fig. 3. (a) Raman spectra of S4TM, S5TM, Y-S5TM and YY-S5TM samples; (b) the histogram the size disorder (δB), mass disorder (τB), and charge disorder (σB) of the high-entropy oxides (HEAO means high-entropy oxides with maximized disordered cations on the A-sites, (La/Y0.2Nd0.2Gd0.2Er0.2Lu0.2)2A2O7).
Fig. 4. (a) Thermal diffusivity and (b) thermal conductivity of the high-entropy Sm2B2O7 oxides, Sm2Zr2O7 [47], and YSZ [14,50]. Error bars represent the standard deviation.
Composition | Abbreviation | IA-B | Thermal expansion coefficients (× 10-6 °C-1) |
---|---|---|---|
Sm2Zr2O7 | SZ | 0.010 | 11.25 |
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | 0.040 | 9.74 |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | 0.042 | 9.49 |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | 0.039 | 10.12 |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | 0.012 | 10.18 |
Table 3. Strength of ionic bond and thermal expansion coefficients of the high-entropy Sm2B2O7 oxides and Sm2Zr2O7.
Composition | Abbreviation | IA-B | Thermal expansion coefficients (× 10-6 °C-1) |
---|---|---|---|
Sm2Zr2O7 | SZ | 0.010 | 11.25 |
Sm2(Hf0.25Sn0.25Ti0.25Zr0.25)2O7 | S4TM | 0.040 | 9.74 |
Sm2(Hf0.2Nb0.2Sn0.2Ti0.2Zr0.2)2O7 | S5TM | 0.042 | 9.49 |
Sm2(Nb0.2Sn0.2Ti0.2Y0.2Zr0.2)2O7 | Y-S5TM | 0.039 | 10.12 |
Sm2(Nb0.2Ta0.2Yb0.2Y0.2Zr0.2)2O7 | YY-S5TM | 0.012 | 10.18 |
Fig. 6. Thermal conductivities versus TECs for the high-entropy Sm2B2O7 oxides as well as other TBC materials [[56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68]].
Fig. 7. Thermal stability of the high-entropy Sm2B2O7 oxides: (a) TG-DSC analysis (air atmosphere, heating rate: 5 °C min-1); (b) phase stability after being treated at 1600 °C for 30 hours.
[1] |
C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315 (2007) 351-353.
PMID |
[2] |
L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.
DOI URL |
[3] |
H.M. Xiang, Y. Xing, F.Z. Dai, H.J. Wang, L. Su, L. Miao, G.J. Zhang, Y.G. Wang, X.W. Qi, L. Yao, H.L. Wang, B. Zhao, J.Q. Li, Y.C. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[4] | J. Yang, X. Qian, W. Pan, R. Yang, Z. Li, Y. Han, M. Zhao, M.Z. Huang, C.L. Wan, Adv. Mater. 31 (2019) 1808222. |
[5] |
A. Benad, F. Jürries, B. Vetter, B. Klemmed, R. Hübner, C. Leyens, A. Eychmüller, Chem. Mater. 30 (2018) 145-152.
DOI URL |
[6] |
Z.H. Liu, Y.D. Ding, F. Wang, Z.P. Deng, Constr. and Build. Mater. 122 (2016) 548-555.
DOI URL |
[7] |
R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George, Science 303 (2004) 989-990.
PMID |
[8] |
S. Mukhopadhyay, D.S. Parker, B.C. Sales, A.A. Puretzky, M.A. McGuire, L. Lind- say, Science 360 (2018) 1455-1458.
DOI PMID |
[9] |
J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins, Adv. Mater. 30 (2018) 1805004.
DOI URL |
[10] |
C.L. Wan, Z.X. Qu, Y. He, D. Luan, W. Pan, Phys. Rev. Lett. 101 (2008) 085901.
DOI URL |
[11] |
A. Giri, A.Z. Chen, A. Mattoni, K. Aryana, D.P. Zhang, X. Hu, S.H. Lee, J.J. Choi, P.E. Hopkins, Nano Lett. 20 (2020) 3331-3337.
DOI URL |
[12] |
L. Xu, H.J. Wang, L. Su, D. Lu, K. Peng, H.F. Gao, J. Eur. Ceram. Soc. 41 (2021) 6670-6676.
DOI URL |
[13] |
J.H. Yu, H.Y. Zhao, S.Y. Tao, X.M. Zhou, C.X. Ding, J. Eur. Ceram. Soc. 30 (2010) 799-804.
DOI URL |
[14] |
J. Wu, X.Z. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo, M.I. Osendi, J. Am. Ceram. Soc. 85 (2002) 3031-3035.
DOI URL |
[15] |
H.X. Wu, Z. Ma, L. Liu, Y.B. Liu, D.Y. Wang, Ceram. Int. 42 (2016) 12922-12927.
DOI URL |
[16] |
C.A. Wang, H.R. Lu, Z.Y. Huang, H.M. Xie, J. Am. Ceram. Soc. 101 (2018) 1095-1104.
DOI URL |
[17] |
K. Ren, Q.K. Wang, G. Shao, X.F. Zhao, Y.G. Wang, Scripta. Mater. 178 (2020) 382-386.
DOI URL |
[18] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[19] |
Y.N. Sun, H.M. Xiang, F.Z. Dai, X.H. Wang, Y. Xing, X.J. Zhao, Y.C. Zhou, J. Adv. Ceram. 10 (2021) 596-613.
DOI URL |
[20] |
N. Dragoe, D. Bérardan, Science 366 (2019) 573-574.
DOI PMID |
[21] |
G. Karthick, L. Raman, B.S. Murtyab, J. Mater. Sci. Technol. 82 (2021) 214-226.
DOI |
[22] | J. Gild, Y.Y. Zhang, T. Harrington, S.C. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N.X. Zhou, K. Vecchio, J. Luo, Sci. Rep-UK. 6 (2016) 37946. |
[23] |
D. Liu, H.H. Liu, S.S. Ning, B.L. Ye, Y.H. Chu, J. Am. Ceram. Soc. 102 (2019) 7071-7076.
DOI |
[24] |
H.M. Zhang, B. Zhao, F.Z. Dai, H.M. Xiang, Z.L. Zhang, Y.C. Zhou, J. Mater. Sci. Technol. 77 (2021) 58-65.
DOI URL |
[25] |
P. Sarker, T.J. Harrington, C. Toher, C. Oses, M. Samiee, J.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 4980.
DOI URL |
[26] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McEl- fresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater. 166 (2019) 271-280.
DOI |
[27] |
J.Y. Zhou, J.Y. Zhang, F. Zhang, B. Niu, L.W. Lei, W.M. Wang, Ceram. Int. 44 (2018) 22014-22018.
DOI URL |
[28] |
H.X. Wang, S.Y. Wang, Y.J. Cao, W. Liu, Y.G. Wang, J. Mater. Sci. Technol. 60 (2021) 147-155.
DOI URL |
[29] |
T. Jin, X.H. Sang, R.R. Unocic, R.T. Kinch, X.F. Liu, J. Hu, H.L. Liu, S. Dai, Adv. Mater. 30 (2018) 1707512.
DOI URL |
[30] |
Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651.
DOI URL |
[31] |
L. Zhou, F. Li, J.X. Liu, S.K. Sun, Y.C. Liang, G.J. Zhang, J. Hazard. Mater. 415 (2021) 125596.
DOI URL |
[32] |
X.Y. Meng, J. Xu, J.T. Zhu, P. Zhang, A. Rydosz, M.J. Reece, F. Gao, Scripta. Mater. 194 (2021) 113714.
DOI URL |
[33] |
L.K. Cong, S.Y. Zhang, S.Y. Gu, W. Li, J. Mater. Sci. Technol. 85 (2021) 152-157.
DOI URL |
[34] |
J. Leitner, P. Vo ˇnka, D. Sedmidubský, P. Svoboda, Thermochim. Acta. 497 (2010) 7-13.
DOI URL |
[35] | K.W. Schlichting, N.P. Padture, P.G. Klemens, J. Mater. Sci. 36 (20 01) 3003-3010. |
[36] |
M.A. Subramanian, G. Aravamudan, G.V. Subba Rao, Prog. Solid. State. Ch. 15 (1983) 55-143.
DOI URL |
[37] | K.L. Smith, M.G. Blackford, G.R. Lumpkin, K. Whittle, N.J. Zaluzec, Microsc. Mi- croanal. 12 (2006) 1094-1095. |
[38] |
J. Xu, R. Xi, X. Xu, Y. Zhang, X. Feng, X. Fang, X. Wang, J. Rare. Earth 38 (2020) 840-849.
DOI URL |
[39] |
L. Xu, L. Su, H.J. Wang, H.F. Gao, D. Lu, K. Peng, M. Niu, Z.X. Cai, J. Am. Ceram. Soc. 105 (2022) 1548-1557.
DOI URL |
[40] |
Z.S. Yang, P. Zhang, W. Pan, Y. Han, M.Z. Huang, H. Chen, Q.M. Gong, C.L. Wan, J. Eur. Ceram. Soc. 40 (2020) 6229-6235.
DOI URL |
[41] |
H. Zhang, J.S. Wang, S.J. Dong, J.Y. Yuan, X. Zhou, S.W. Duo, S. Chen, P.J. Huo, Jiang J.N, L.H. Deng, X.Q. Cao, J. Alloy. Compd. 785 (2019) 1068-1076.
DOI |
[42] |
H.S. Zhang, H.P. Yu, X.G. Chen, Y.D. Zhao, H.B. Jiao, G. Li, Z.J. Li, Ceram. Int. 42 (2016) 14695-14699.
DOI URL |
[43] |
L. Guo, M.Z. Li, F.X. Ye, Ceram. Int. 42 (2016) 7360-7365.
DOI URL |
[44] | M.T. Vandenborre, E. Husson, J.P. Chatry, D. Michel, Spectrosc. 14 (1983) 63-71. |
[45] |
H.C. Gupta, S. Brown, N. Rani, V.B. Gohel, J. Raman Spectrosc. 32 (2001) 41-44.
DOI URL |
[46] | C. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, T. Paramasivam, Mater. Lett. 228 (2018) 4 93-4 96. |
[47] |
S.Q. Wu, Z.L. Xue, X.J. Ji, E. Byon, S.H. Zhang, J. Alloy. Compd. 842 (2020) 155872.
DOI URL |
[48] | Z. Teng, Y.Q. Tan, S.F. Zeng, Y. Meng, C. Chen, X.C. Han, H.B. Zhang, J. Eur. Ce- ram. Soc. 41 (2021) 3614-3620. |
[49] |
A.J. Wright, Q.Y. Wang, S.T. Ko, K.M. Chung, R.K. Chen, J. Luo, Scripta. Mater. 181 (2020) 76-81.
DOI URL |
[50] | K. Sasaki, T. Terai, A. Suzuki, N. Akasaka, Int. J. Appl. Ceram. Tec. 7 (2010) 518-527. |
[51] |
H. Zhang, J.Y. Yuan, W.J. Song, X. Zhou, S.J. Dong, S.W. Duo, J.S. Wang, X. Yang, J.N. Jiang, L.H. Deng, J.Q. Huang, X.Q. Cao, Ceram. Int. 46 (2020) 6641-6651.
DOI URL |
[52] |
V. Heine, P.R.L. Welche, M.T. Dove, J. Am. Ceram. Soc. 82 (1999) 1793-1802.
DOI URL |
[53] |
H. Zhang, J.B. Sun, S.W. Duo, X. Zhou, J.Y. Yuan, S.J. Dong, X. Yang, J.Y. Zeng, J.N. Jiang, L.H. Deng, X.Q. Cao, J. Eur. Ceram. Soc. 39 (2019) 2379-2388.
DOI |
[54] |
T. Jiang, M. Xie, X.L. Wang, X.W. Song, Adv. Appl. Ceram. 119 (2020) 212-217.
DOI URL |
[55] |
J.J. He, G. He, J. Liu, J.C. Tao, J. Eur. Ceram. Soc. 41 (2021) 6080-6086.
DOI URL |
[56] |
X.Y. Wang, S.N. Guo, L.L. Zhao, Y.P. Zhu, L. Ai, Ceram. Int. 42 (2016) 2648-2653.
DOI URL |
[57] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Adv. Ceram. 9 (2020) 303-311.
DOI URL |
[58] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, W. Xu, K. Sun, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 47 (2020) 45-51.
DOI URL |
[59] |
Z.F. Zhao, H. Chen, H.M. Xiang, F.Z. Dai, X.H. Wang, Z.J. Peng, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896.
DOI URL |
[60] |
H. Chen, Z.F. Zhao, H.M. Xiang, F.Z. Dai, W. Xu, K. Sun, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 48 (2020) 57-62.
DOI URL |
[61] |
J. Wang, F.S. Wu, R.A. Zou, Y.S. Wu, M.D. Gan, J. Feng, X.Y. Chong, J. Am. Ceram. Soc. 104 (2021) 5873-5882.
DOI URL |
[62] |
J.T. Zhu, X.Y. Meng, P. Zhang, Z.L. Li, J. Xu, M.J. Reece, F. Gao, J. Eur. Ceram. Soc. 41 (2021) 2861-2869.
DOI URL |
[63] |
J.Y. Xiang, S.H. Chen, J.H. Huang, H. Zhang, X.K. Zhao, Ceram. Int. 38 (2012) 3607-3612.
DOI URL |
[64] |
J. Wang, S.X. Bai, H. Zhang, C.R. Zhang, J. Alloy. Compd. 476 (2009) 89-91.
DOI URL |
[65] |
N.P. Padture, P.G. Klemens, J. Am. Ceram. Soc. 80 (1997) 1018-1020.
DOI URL |
[66] |
B. Jiang, M.H. Fang, Z.H. Huang, Y.G. Liu, P. Peng, J. Zhang, Mater. Res. Bull. 45 (2010) 1506-1508.
DOI URL |
[67] |
X. Zhou, Z.H. Xu, X.Z. Fan, S.M. Zhao, X.Q. Cao, L.M. He, Mater. Lett. 134 (2014) 146-148.
DOI URL |
[68] |
L. Chen, P. Wu, J. Feng, Int. J. Appl. Ceram. Tec. 16 (2019) 230-242.
DOI URL |
[1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[2] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
[3] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[4] | Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. J. Mater. Sci. Technol., 2022, 117(0): 238-250. |
[5] | R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance [J]. J. Mater. Sci. Technol., 2022, 116(0): 94-102. |
[6] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[7] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[8] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[9] | Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 101-108. |
[10] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[11] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
[12] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[13] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[14] | Menghe Zhu, Zhewen Ma, Lei Liu, Jianzhong Zhang, Siqi Huo, Pingan Song. Recent advances in fire-retardant rigid polyurethane foam [J]. J. Mater. Sci. Technol., 2022, 112(0): 315-328. |
[15] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||