J. Mater. Sci. Technol. ›› 2022, Vol. 119: 190-199.DOI: 10.1016/j.jmst.2021.12.030
• Research Article • Previous Articles Next Articles
Zhuojie Shaoa,b, Zhen Wua,*(), Luchao Suna, Xianpeng Lianga,b, Zhaoping Luoa, Haikun Chenc, Junning Lic, Jingyang Wanga,*(
)
Received:
2021-10-09
Revised:
2021-11-30
Accepted:
2021-12-03
Published:
2022-03-02
Online:
2022-03-02
Contact:
Zhen Wu,Jingyang Wang
About author:
jywang@imr.ac.cn (J. Wang).Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties[J]. J. Mater. Sci. Technol., 2022, 119: 190-199.
Fig. 1. (a) XRD patterns of mixed powders and sintered samples with different SiC contents; (b) Rietveld refinement pattern of sample with 2 wt.% SiC content.
Fig. 2. SEM images of large pores, cell wall and crystal grains for porous high entropy carbide samples: (a)-(c) for HEC-10, (d)-(f) for HEC-15 and (g)-(i) for HEC-20.
Fig. 5. STEM-EDS analysis of porous high entropy carbide sample: (a) HAADF image, (b) corresponding ABF image, (c) SAED pattern and (d)-(i) corresponding EDS mappings.
Fig. 6. (a) Compressive strength and thermal conductivity of samples with different porosities at room temperature; (b) thermal conductivity of samples with different porosities as a function of temperature.
Fig. 7. (a) BSE image of cell wall surface of HEC-10, (b)-(f) HAADF images of cross-section containing grain boundary, (g) STEM and corresponding EDS mappings of porous high entropy carbide near surface of sintering neck.
Fig. 8. (a) STEM and corresponding EDS mappings of HEC-10 at interface of matrix grains; (b) HRTEM of porous sample at grain boundary and (c) corresponding FFT image of grain A/grain B interface, (d) inverse FFT image of a selected pair of diffraction spots, while the insert shows selected pair of diffraction spots of grain A.
Fig. 9. (a) DSC curves of mixed powders and high entropy carbide powders with 0 wt.%, 0.6 wt.% and 2 wt.% SiC; (b) corresponding TG curves of mixed powders and high entropy carbide powders with SiC additive.
[1] | E. Wuchina, E. Opila, M. Opeka, W.G. Fahrenholtz, I.G. Talmy, Electrochem. Soc. Interface 19 (2007) 30-36. |
[2] |
X.D. Wu, G.F. Shao, S.J. Liu, X.D. Shen, S. Cui, X.B. Chen, Powder Technol. 312 (2017) 1-10.
DOI URL |
[3] |
J.N. Li, Z.J. Hu, X.T. Wang, J.X. Yang, C.C. Sun, Ceram. Int. 43 (2017) 8343-8347.
DOI URL |
[4] |
J.J. Sun, Z.J. Hu, J.N. Li, H.B. Zhang, C.C. Sun, Ceram. Int. 40 (2014) 11787-11793.
DOI URL |
[5] |
X.D. Wu, G.F. Shao, S. Cui, L. Wang, X.D. Shen, Ceram. Int. 42 (2016) 874-882.
DOI URL |
[6] | L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971. |
[7] |
J. Haglund, A.F. Guillermet, G. Grimvall, M. Korling, Phys. Rev. B 48 (1993) 11685-11691.
DOI URL |
[8] | S.T. Oyama, The Chemistry of Transition Metal Carbides and Nitrides, Springer, Dordrecht, 1996. |
[9] | X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastas, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4 486-4 491. |
[10] |
L.L. Gong, Y.H. Wang, X.D. Cheng, R.F. Zhang, H.P. Zhang, Int. J. Heat Mass Transfer 67 (2013) 253-259.
DOI URL |
[11] |
H.M. Xiang, Y. Xing, F.Z. Dai, H.J. Wang, L. Su, L. Miao, G.J. Zhang, Y.G. Wang, X.W. Qi, L. Yao, H.L. Wang, B. Zhao, J.Q. Li, Y.C. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[12] | H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.M. Lei, J. Zhang, Y.C. Zhou, J. Mater. Sci. 35 (2019) 1700-1705. |
[13] | L. Silvestroni, D. Sciti, Adv. Mater. Sci. Eng. 2010 (2010) 1-11. |
[14] |
E. Khaleghi, Y.S. Lin, M.A. Meyers, E.A. Olevsky, Scr. Mater. 63 (2010) 577-580.
DOI URL |
[15] |
L. Feng, W.G. Fahrenholtz, G.E. Hilmas, Y. Zhou, Scr. Mater. 162 (2019) 90-93.
DOI URL |
[16] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McEl- fresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater. 166 (2019) 271-280.
DOI |
[17] |
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 4980.
DOI URL |
[18] |
X.F. Wei, J.X. Liu, F. Li, Y. Qin, Y.C. Liang, G.J. Zhang, J. Eur. Ceram. Soc. 39 (2019) 2989-2994.
DOI URL |
[19] |
S.A. Ghaffari, M.A. Faghihi Sani, F. Golestani Fard, H. Mandal, J. Eur. Ceram. Soc. 33 (2013) 1479-1484.
DOI URL |
[20] |
B. Shipra, K. Rishabh, B. Kantesh, Mater. Sci. Eng. A 796 (2020) 140022.
DOI URL |
[21] |
R.A. Morris, B. Wang, D. Butts, G.B. Thompson, Int. J. Appl. Ceram. Technol. 10 (2013) 540-551.
DOI URL |
[22] |
H.Z. Zhang, F. Akhtar, Ceramics 3 (2020) 359-371.
DOI URL |
[23] |
H.Z. Zhang, F. Akhtar, Entropy 21 (2019) 474.
DOI URL |
[24] |
K. Lu, J.X. Liu, X.F. Wei, W.C. Bao, Y. Wu, F. Li, F.F. Xu, G.J. Zhang, J. Eur. Ceram. Soc. 40 (2020) 1839-1847.
DOI URL |
[25] |
H.X. Wang, Y.J. Cao, W. Liu, Y.G. Wang, Ceram. Int. 46 (2020) 11160-11168.
DOI URL |
[26] |
S.S. Hwang, A.L. Vasiliev, N.P. Padture, Mater. Sci. Eng. A 464 (2007) 216-224.
DOI URL |
[27] |
D.D. Jayaseelan, Y. Wang, G.E. Hilmas, W. Fahrenholtz, P. Brown, W.E. Lee, Adv. Appl. Ceram. 110 (2011) 1-7.
DOI URL |
[28] |
D.L. Hu, H. Gu, J. Zou, Q. Zheng, G.J. Zhang, J. Materiomics 7 (2021) 69-79.
DOI URL |
[29] |
Z. Wu, L.C. Sun, J.J. Pan, J.Y. Wang, J. Am. Ceram. Soc. 101 (2018) 1042-1047.
DOI URL |
[30] |
J.Y. Zhou, J.Y. Zhang, F. Zhang, B. Niu, L.W. Lei, W.M. Wang, Ceram. Int. 44 (2018) 22014-22018.
DOI URL |
[31] |
M. Gendre, A. Maitre, G. Trolliard, J. Eur. Ceram. Soc. 31 (2011) 2377-2385.
DOI URL |
[32] | H.L. Liu, Z.Y. Man, J.X. Liu, X.G. Wang, G.J. Zhang, J. Alloy. Compd. 729 (2017) 492-497. |
[33] |
Z. Wu, W.P. Hu, Y.X. Luo, L.C. Sun, J.Y. Wang, J. Eur. Ceram. Soc. 38 (2018) 3347-3353.
DOI URL |
[34] |
F. Li, K. Zhuang, X. Huang, X.G. Wang, G.J. Zhang, J. Eur. Ceram. Soc. 34 (2014) 3513-3520.
DOI URL |
[35] |
B. Ren, Y.L. Wang, J.J. Liu, X.Y. Zhang, Y.G. Chen, Y.D. Rong, J.L. Yang, Ceram. Int. 45 (2019) 6581-6584.
DOI |
[36] |
L.J. Zhou, Z.H. Li, Y.M. Zhu, Mater. Lett. 239 (2019) 67-70.
DOI URL |
[37] |
X.Y. Meng, J. Xu, J.T. Zhu, P. Zhang, A. Rydosz, M.J. Reece, F. Gao, Scr. Mater. 194 (2021) 113714.
DOI URL |
[38] |
F. Li, M.S. Liang, X.F. Ma, X. Huang, G.J. Zhang, J. Porous Mater. 22 (2015) 493-500.
DOI URL |
[39] |
T. Shimizu, K. Matsuura, H. Furue, K. Matsuzak, J. Eur. Ceram. Soc. 33 (2013) 3429-3435.
DOI URL |
[40] |
Z. Wu, X.P. Liang, Z.J. Shao, H.K. Chen, J.N. Li, J.Y. Wang, Materialia 18 (2021) 101158.
DOI URL |
[41] |
M.D. Qin, J. Gild, C. Hu, H.R. Wang, M.S.B. Hoque, J.L. Braun, T.J. Harrington, P.E. Hopkins, K.S. Vecchio, J. Luo, J. Eur. Ceram. Soc. 40 (2020) 5037-5050.
DOI URL |
[42] |
H. Schneider, J. Schreuer, B. Hildmann, J. Eur. Ceram. Soc. 28 (2008) 329-344.
DOI URL |
[43] |
C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, J.D. Wang, Z.X. Qu, M.H. Fang, Phys. Rev. B 74 (2006) 1-9.
DOI URL |
[44] |
R.R. Monchamp, J. Solid State Chem. 12 (1975) 201-206.
DOI URL |
[45] |
D. Sciti, S. Guicciardi, L. Silvestroni, Scr. Mater. 64 (2011) 769-772.
DOI URL |
[46] |
J. Dusza, P. Švec, V. Girman, R. Sedlák, E.G. Castle, T. Csanádi, A. Koval ˇcíková, M.J. Reece, J. Eur. Ceram. Soc. 38 (2018) 4303-4307.
DOI URL |
[47] |
Y. Yuan, J.X. Liu, G.J. Zhang, Ceram. Int. 42 (2016) 7861-7867.
DOI URL |
[48] |
Z. Ahmadi, B. Nayebi, M.S. Asl, I. Farahbakhsh, Z. Balak, Ceram. Int. 44 (2018) 11431-11437.
DOI URL |
[49] |
P. Zhang, P. Hu, X.H. Zhang, J.C. Han, S.H. Meng, J. Alloy. Compd. 472 (2009) 358-362.
DOI URL |
[1] | Lei Zhou, Jiaping Zhang, Dou Hu, Qiangang Fu, Wuqing Ding, Jiaqi Hou, Bing Liu, Mingde Tong. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation [J]. J. Mater. Sci. Technol., 2022, 111(0): 88-98. |
[2] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[3] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[4] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[5] | Z.H. Wang, B. Niu, Q. Wang, C. Dong, J.C. Jie, T.M. Wang, T.G. Nieh. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles [J]. J. Mater. Sci. Technol., 2021, 93(0): 60-70. |
[6] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[7] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[8] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[9] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
[10] | Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. J. Mater. Sci. Technol., 2020, 43(0): 64-73. |
[11] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[12] | Luhan Hao, Xiang Ji, Guangqian Zhang, Wei Zhao, Mingyue Sun, Yan Peng. Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 122-130. |
[13] | Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56. |
[14] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
[15] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||