J. Mater. Sci. Technol. ›› 2022, Vol. 103: 121-133.DOI: 10.1016/j.jmst.2021.06.042
• Research Article • Previous Articles Next Articles
Dina Bayoumya,b, Kwangsik Kwakc, Torben Bolld, Stefan Dietriche, Daniel Schliephakee, Jie Huangf, Junlan Yif, Kazuki Takashimac, Xinhua Wua,b, Yuman Zhua,b,*(), Aijun Huanga,b,*(
)
Received:
2021-04-14
Revised:
2021-06-23
Accepted:
2021-06-23
Published:
2022-03-20
Online:
2021-08-31
Contact:
Yuman Zhu,Aijun Huang
About author:
aijun.huang@monash.edu (A. Huang).Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion[J]. J. Mater. Sci. Technol., 2022, 103: 121-133.
Fig. 1. Sample preparation for micro-tensile testing. (a) Disk with 3 mm in diameter and a thickness of ~10 µm, (b) enlarged FIB image showing the micro-tensile sample taken from the center area of the disk marked by the rectangular frame in (a), (c) high-magnification FIB image showing the gauge length (L), width (W), and thickness (t), LD and TD represent the loading direction and the transverse direction of the micro-tensile sample respectively.
Fig. 2. Engineering stress-strain (SS) curves of the alloy in as-fabricated (AF) and heat-treated (HT) conditions (300 °C/6 h). Their local yield regions, as marked by dashed-line frames, are enlarged and inserted for clarity.
Fig. 3. Strain monitoring by DIC method of an HT specimen during tensile deformation. (a) Five overall strain levels (marked by dashed-lines) selected for DIC images, (b) illustration in the specimen gauge showing the virtual extensometer set for measuring the overall strain (OS) and localized strain (LS), (c-g) DIC maps showing strain fields forming within the gauge at different strain levels, (h) the evolution of stress with time, (i) the corresponding evolution of OS and LS with time.
Fig. 4. Typical bimodal grain structure in the HT sample. (a) EBSD inverse pole figure (IPF) map showing alternating FG and CG regions. The samples for micro-tensile testing are also shown, the IPF map is generated by choosing build direction (BD) as the projection axis, ND is the direction normal to BD. (b, c) Corresponding pole figures from CG and FG regions, respectively. (d, e) Grain size distribution of CG and FG regions respectively.
Fig. 5. Stress-strain curves from the micro-tensile testing. (a) Engineering stress-strain curves of the FG, SCG, LCG micro-tensile specimens, (b) close-up view at the tensile stress level beyond 500 MPa.
σ0.2 (MPa) | σUTS or σUY (MPa) | |
---|---|---|
LCG | 526 | 573 |
SCG | 493 | 591 |
FG | 576 | 632 |
Macro-property values | 559 ± 4 | 572 ± 9 |
Table 1 Mechanical property values from micro-tensile and macro-tensile curves of the alloy in HT condition.
σ0.2 (MPa) | σUTS or σUY (MPa) | |
---|---|---|
LCG | 526 | 573 |
SCG | 493 | 591 |
FG | 576 | 632 |
Macro-property values | 559 ± 4 | 572 ± 9 |
Fig. 6. Intermetallic particles in FG and CG regions. SEM-BSE image taken from (a) FG and (b) CG regions of an HT sample, showing a high number density of intermetallic particles forming in both areas. (c, d) 3D visualization reconstructed from the FIB slice-and-view images showing the intermetallic particles in the FG region and CG region, respectively.
Volume fraction, f (%) | Number density, N (m-3) | Average radius, r (nm) | |
---|---|---|---|
FG | 1.16 | 1.85 × 1024 | 1.15 ± 0.25 |
CG | 1.68 | 2.41 × 1024 | 1.19 ± 0.30 |
Table 2 The cluster analysis results in FG and CG from APT data.
Volume fraction, f (%) | Number density, N (m-3) | Average radius, r (nm) | |
---|---|---|---|
FG | 1.16 | 1.85 × 1024 | 1.15 ± 0.25 |
CG | 1.68 | 2.41 × 1024 | 1.19 ± 0.30 |
Fig. 8. Secondary precipitates in the matrix of HT sample. (a) HAADF-STEM image taken along <001>α displaying a high number density of nano-sized precipitates finely dispersed in the HT sample. Corresponding FFT pattern inserted showing the diffraction spots from these precipitates, indicated by holy arrows. (b) Enlarged image showing the L12 structure (a = 0.42 nm) of the precipitate marked by yellow-color dashed-line frame in (a).
Fig. 9. BF-STEM images of HT sample with 5% tensile strain revealing the dislocation structure inside (a, b) two different grains in FG region, and (c) a grain in CG region. Beam directions in (a-c) are parallel to <110>Al.
Fig. 10. HT sample strained to fracture. (a) SEM image of tensile fracture surface showing micro cracks occurring in FG and interface delamination, (b) enlarged image from red-color dashed-line rectangle frame in (a) showing the nucleation of microvoids due to grain boundary particles decohesion followed by progressive linkage of microcracks propagating along the grain boundary, (c) SEM image showing a crack blunting at the CG region.
Strengthening contribution | FG (MPa) | CG (MPa) |
---|---|---|
Grain boundary (σGB) | 231 | 117 |
Secondary particle (σms + σcs) | 258 | 314 |
Solid solution (σss) | 118 | 116 |
Total strength | 607 | 547 |
Table 3 Calculated strength contribution from different strengthening mechanisms.
Strengthening contribution | FG (MPa) | CG (MPa) |
---|---|---|
Grain boundary (σGB) | 231 | 117 |
Secondary particle (σms + σcs) | 258 | 314 |
Solid solution (σss) | 118 | 116 |
Total strength | 607 | 547 |
[1] | L. Bian, N. Shamsaei, J.M. Usher, Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties, first ed., CRC Press, New York, 2017. |
[2] |
N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106 (2019) 100578.
DOI URL |
[3] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[4] | I. Polmear, D. St. John, J.F. Nie, M. Qian, Light Alloys: Metallurgy of the Light Metals, fifth ed., Elsevier, Oxford, 2017. |
[5] | S. Lathabai, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy: Re- cent Advances, Elsevier, 2018, pp. 47-92. |
[6] | P. Rometsch, Q. Jia, K.V. Yang, X. Wu, in: F. Froes, R. Boyer (Eds.), Additive Man- ufacturing for the Aerospace Industry, Elsevier, 2019, pp. 301-325. |
[7] |
Q. Jia, P. Rometsch, S. Cao, K. Zhang, X. Wu, Mater. Des. 174 (2019) 107775.
DOI URL |
[8] |
A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, CIRP Ann.-Manuf. Technol. 65 (2016) 213-216.
DOI URL |
[9] | H. Zhang, D. Gu, J. Yang, D. Dai, T. Zhao, C. Hong, A. Gasser, R. Poprawe, Addit. Manuf. 23 (2018) 1-12. |
[10] | J. Glerum, T. Sun, C. Kenel, D.C. Dunand, Addit. Manuf. 36 (2020) 101461. |
[11] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater 193 (2020) 83-98.
DOI URL |
[12] |
A.B. Spierings, K. Dawson, K. Kern, F. Palm, K. Wegener, Mater. Sci. Eng. A 701 (2017) 264-273.
DOI URL |
[13] |
D. Bayoumy, D. Schliephake, S. Dietrich, X.H. Wu, Y.M. Zhu, A.J. Huang, Mater. Des. 198 (2021) 109317.
DOI URL |
[14] |
Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Acta Mater 171 (2019) 108-118.
DOI URL |
[15] |
J. Røyset, N. Ryum, Int. Mater. Rev. 50 (2005) 19-44.
DOI URL |
[16] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
[17] |
H. Zhang, D. Gu, D. Dai, C. Ma, Y. Li, R. Peng, S. Li, G. Liu, B. Yang, Mater. Sci. Eng. A 788 (2020) 139593.
DOI URL |
[18] |
R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, J. Alloys Compd. 815 (2020) 152422.
DOI URL |
[19] | Z. Wang, X. Lin, N. Kang, Y. Hu, J. Chen, W. Huang, Addit. Manuf. 34 (2020) 101260. |
[20] |
A.B. Spierings, K. Dawson, P.J. Uggowitzer, K. Wegener, Mater. Des. 140 (2018) 134-143.
DOI URL |
[21] | R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, Mater. Sci. Eng. A 775 (2020). |
[22] | R. Ma, C. Peng, Z. Cai, R. Wang, Z. Zhou, X. Li, X. Cao, J. Alloys Compd. 831 (2020). |
[23] |
Y. Shi, K. Yang, S.K. Kairy, F. Palm, X. Wu, P.A. Rometsch, Mater. Sci. Eng. A 732 (2018) 41-52.
DOI URL |
[24] | T. DebRoy, S.A. David, J.N. DuPont, T. Koseki, H.K. Bhadeshia, in: Proceedings of the 9th International Conference, ASM International, 2013. |
[25] |
Q. Jia, F. Zhang, P. Rometsch, J. Li, J. Mata, M. Weyland, L. Bourgeois, M. Sui, X. Wu, Acta Mater 193 (2020) 239-251.
DOI URL |
[26] |
K.L. Kendig, D.B. Miracle, Acta Mater 50 (2002) 4165-4175.
DOI URL |
[27] |
N. Kumar, R.S. Mishra, Mater. Sci. Eng. A 580 (2013) 175-183.
DOI URL |
[28] |
N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Scr. Mater. 64 (2011) 576-579.
DOI URL |
[29] | R.E. Smallman, A.H.W. Ngan, Modern Physical Metallurgy, eighth ed., Elsevier, Butterworths, 2014. |
[30] |
T. Ito, Y. Mine, M. Otsu, K. Takashima, Mater. Trans. 57 (2016) 1252-1256.
DOI URL |
[31] | N. Phansalkar, S. More, A. Sabale, M. Joshi, in: ICCSP 2011—2011 International Conference on Communications and Signal Processing, 2011, pp. 218-220. |
[32] |
D. Legland, I. Arganda-Carreras, P. Andrey, Bioinformatics 32 (2016) 3532-3534.
PMID |
[33] |
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Piet-zsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods. 9 (2012) 676-682.
DOI PMID |
[34] | D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly, Local Electrode Atom Probe Tomography, Springer, New York, 2013. |
[35] |
O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6 (2000) 437-444.
PMID |
[36] | A.B. Spierings, K. Dawson, P. Dumitraschkewitz, S. Pogatscher, K. Wegener, Ad-dit. Manuf. 20 (2018) 173-181. |
[37] |
C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater 51 (2003) 4803-4814.
DOI URL |
[38] | G. Gottstein, Physical Foundations of Materials Science, Springer Science & Business Media, 2004. |
[39] | J. Wyrzykowski, M.W. Grabski, Liiders deformation in Ultrafine-Grained Pure Aluminium, (1982). |
[40] |
N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47 (2002) 893-899.
DOI URL |
[41] |
C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater 53 (2005) 4019-4028.
DOI URL |
[42] |
P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, Scr. Mater. 52 (2005) 265-269.
DOI URL |
[43] |
R. Mahmudi, Mater. Lett. 19 (1994) 243-246.
DOI URL |
[44] |
D.J. Lloyd, Met. Sci. 14 (1980) 193-198.
DOI URL |
[45] |
D.J. Lloyd, H. Jin, Mater. Sci. Eng. A 585 (2013) 455-459.
DOI URL |
[46] |
R. Schwab, V. Ruff, Acta Mater 61 (2013) 1798-1808.
DOI URL |
[47] |
A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62 (1949) 49.
DOI URL |
[48] |
B.J. Brindley, P.J. Worthington, Metall. Rev. 15 (1970) 101-141.
DOI URL |
[49] |
D.J. Lloyd, Met. Sci. 14 (1980) 193-198.
DOI URL |
[50] |
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427-556.
DOI URL |
[51] |
E.V. Kozlov, A.N. Zhdanov, N.A. Koneva, Phys. Mesomech. 11 (2008) 42-50.
DOI URL |
[52] | D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, second ed., Chapman & Hall, London, 1992. |
[53] | C.Q. Chen, J.F. Knott, Met. Sci. 15 (1981) 357-364. |
[54] |
B. Ahn, S.R. Nutt, Exp. Mech. 50 (2010) 117-123.
DOI URL |
[55] |
L. Ladani, S. Nelson, J. Eng. Mater. Technol. Trans. ASME 133 (2011) 041017.
DOI URL |
[56] |
B.Q. Han, Z. Lee, D. Witkin, S. Nutt, E.J. Lavernia, Metall. Mater. Trans. A 36 (2005) 957-965.
DOI URL |
[57] |
R.Q. Ye, B.Q. Han, E.J. Lavernia, Metallurg. Mater. Trans. A 36 (2005) 1833-1840.
DOI URL |
[58] |
Z. Lee, V. Radmilovic, B. Ahn, E.J. Lavernia, S.R. Nutt, Metall. Mater. Trans. A 41 (2010) 795-801.
DOI URL |
[60] |
K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Scr. Mater. 145 (2018) 113-117.
DOI URL |
[61] |
X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Mater. Des. 168 (2019) 107677.
DOI URL |
[62] |
E.O. Hall, Proc. Phys. Soc. Sect. B 64 (1951) 747.
DOI URL |
[63] |
Ø. Ryen, O. Nijs, E. Sjölander, B. Holmedal, H.E. Ekström, E. Nes, Metall. Mater. Trans. A 37 (2006) 1999-2006.
DOI URL |
[64] | K. Dinsdale, S.J. Harris, B. Noble, in: T.H. Sanders, E.A. Starke (Eds.), TMS Pro- ceedings, 1981, pp. 102-118. |
[65] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[66] |
A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165.
DOI URL |
[67] |
D. Seidman, E. Marquis, D. Dunand, Acta Mater 50 (2002) 4021-4035.
DOI URL |
[68] |
K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Acta Mater 58 (2010) 5184-5195.
DOI URL |
[69] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater 62 (2014) 141-155.
DOI URL |
[70] |
L.A. Gypen, A. Deruyttere, J. Mater. Sci. 12 (1977) 1028-1033.
DOI URL |
[1] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[2] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[3] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[4] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[5] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[6] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[7] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[8] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[9] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[10] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[11] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[12] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[13] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[14] | Zifan Hao, Guoliang Xie, Xinhua Liu, Qing Tan, Rui Wang. The precipitation behaviours and strengthening mechanism of a Cu-0.4 wt% Sc alloy [J]. J. Mater. Sci. Technol., 2022, 98(0): 1-13. |
[15] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||