J. Mater. Sci. Technol. ›› 2021, Vol. 81: 219-228.DOI: 10.1016/j.jmst.2020.11.069
• Research Article • Previous Articles Next Articles
Zhong-Zheng Jina, Min Zhaa,b,c,*, Hai-Long Jiaa,b,c, Pin-Kui Maa, Si-Qing Wanga, Jia-Wei Lianga, Hui-Yuan Wanga,b,c,*()
Received:
2020-09-29
Revised:
2020-11-03
Accepted:
2020-11-03
Published:
2021-01-16
Online:
2021-01-16
Contact:
Min Zha,Hui-Yuan Wang
About author:
*Key Laboratory of Automobile Materials of Ministryof Education & School of Materials Science and Engineering, Nanling Campus, JilinUniversity, Changchun 130025, China.E-mail address: wanghuiyuan@jlu.edu.cn (H.-Y. Wang).Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling[J]. J. Mater. Sci. Technol., 2021, 81: 219-228.
Fig. 2. EBSD maps of as-cast (a) CS and (b) SRS sample and (c) the corresponding distribution of grain size. The unindexed black regions are second phase particles.
Sample | kCa | kZn |
---|---|---|
SRS | 0.07 | 0.43 |
CS | 0.03 | 0.40 |
Table 1 Average partition coefficients (k) of Ca and Zn elements under SRS and CS processes.
Sample | kCa | kZn |
---|---|---|
SRS | 0.07 | 0.43 |
CS | 0.03 | 0.40 |
Fig. 7. (0002) EBSD maps of the as-rolled (a) CS and (b) SRS sample with thickness reduction of ~50 % and the corresponding elemental mappings of Zn and Ca. The unindexed black regions are Ca2Mg6Zn3 particles as marked by white arrows.
Fig. 9. HAADF-STEM images of (a) CS-HPR sample and (b) SRS-HPR sample, and (c, d) the corresponding STEM-EDS maps (Zn-blue and Ca-green). The typical fragmented Ca2Mg6Zn3 spherical particles are indicated by yellow arrows.
Fig. 10. Bright-field TEM image of (a) SRS-HPR and (b) CS-HPR sample, (c) HRTEM image of interface between α-Mg matrix and nano-precipitate (marked by dashed lines), FFT images of (d) α-Mg and (e) MgZn 2 phase.
Fig. 11. EBSD maps of (a) CS-HPR and (b) SRS-HPR sample and (c) the corresponding deviation of c-axis of grains from ND. Macro-texture of (d) CS-HPR and (e) SRS-HPR sample.
Fig. 12. Hard oriented grains with c-axis parallel to ND identified by red regions with a tolerance of 10° in the (a) CS-HPR sample and (b) SRS-HPR sample. Inserted images depict the three-dimensional crystallographic orientation of grains.
Fig. 13. Room-temperature tensile tests of CS-HPR and SRS-HPR samples: (a) engineering stress-strain curves, (b) the corresponding true stress-strain curves and (c) work hardening curves. (d) Relationships between UTS and elongation, including representative rolled [8,24,[56], [57], [58], [59], [60]] Mg-Zn-Ca alloys.
[1] |
T.M. Pollock, Science 328 (2010) 986-987.
DOI PMID |
[2] |
B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45.
DOI URL |
[3] |
H. Somekawa, A. Singh, Y. Osawa, T. Mukai, Mater. Trans. 49 (2008)1947-1952.
DOI URL |
[4] |
X. Gao, J.F. Nie, Scr. Mater. 56 (2007) 645-648.
DOI URL |
[5] |
H. Somekawa, A. Singh, T. Mukai, Scr. Mater. 60 (2009) 411-414.
DOI URL |
[6] |
R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161 (2018)246-257.
DOI URL |
[7] |
Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, I.S. Golovin, Mater. Des. 98 (2016) 285-293.
DOI URL |
[8] |
M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, Y. Chino, Acta Mater. 83 (2015) 294-303.
DOI URL |
[9] |
Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 576 (2013) 6-13.
DOI URL |
[10] |
W. Wang, W. Chen, W. Zhang, G. Cui, E. Wang, Mater. Sci. Eng. A 712 (2018)608-615.
DOI URL |
[11] | Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, W.A. Curtin, Science 359 (2018)447-452. |
[12] |
D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, N.J. Kim, Metall. Mater. Trans. 44 (2013) 2950-2961.
DOI URL |
[13] |
S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul Kadir, A.F. Lotfabadi, A. Ourdjini, Thermochim. Acta 527 (2012) 180-189.
DOI URL |
[14] |
H. Somekawa, T. Mukai, Mater. Sci. Eng. A 459 (2007) 366-370.
DOI URL |
[15] |
Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, A. Bahmani, Mater. Sci. Eng. A 774 (2020), 138929.
DOI URL |
[16] |
C.Y. Ma, C. Wang, Z.M. Hua, P.Y. Wang, J.G. Wang, H.Y. Wang, Mater. Charact. 169 (2020), 110580.
DOI URL |
[17] |
S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, T. Homma, Mater. Sci. Eng. A 542 (2012) 71-78.
DOI URL |
[18] |
H. Chen, S.B. Kang, H. Yu, H.W. Kim, G. Min, Mater. Sci. Eng. A 492 (2008)317-326.
DOI URL |
[19] |
P. Minárik, M. Zimina, J. Čížek, J. Stráska, T. Krajňák, M. Cieslar, T. Vlasák, J. Bohlen, G. Kurz, D. Letzig, Mater. Charact. 153 (2019) 199-207.
DOI URL |
[20] | S.S. Park, Y.S. Oh, D.H. Kang, N.J. Kim, Mater. Sci. Eng. A 449- 451 (2007)352-355. |
[21] |
S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, W. Ding, Mater. Sci. Eng. A 562 (2013) 152-160.
DOI URL |
[22] |
Z.T. Liu, B.Y. Wang, C. Wang, M. Zha, G.J. Liu, Z.Z. Yang, J.G. Wang, J.H. Li, H.Y. Wang, J. Mater. Sci. Technol. 41 (2020) 178-186.
DOI URL |
[23] |
Z.T. Liu, C. Wang, Q. Luo, J. You, X.L. Zhou, J. Xu, Y.T. Mo, J.W. Song, M. Zha, H.Y. Wang, Materialia 13 (2020), 100850.
DOI URL |
[24] |
M. Zhou, X. Huang, Y. Morisada, H. Fujii, Y. Chino, Mater. Sci. Eng. A 769 (2020), 138474.
DOI URL |
[25] |
H.Y. Wang, Z.P. Yu, L. Zhang, C.G. Liu, M. Zha, C. Wang, Q.C. Jiang, Sci. Rep. 5 (2015) 17100.
DOI URL |
[26] |
Z.Z. Jin, X.M. Cheng, M. Zha, J. Rong, H. Zhang, J.G. Wang, C. Wang, Z.G. Li, H.Y. Wang, J. Mater. Sci. Technol. 35 (2019) 2017-2026.
DOI URL |
[27] |
Z.P. Yu, M. Zha, Z.H. Li, C. Wang, H.Y. Wang, Q.C. Jiang, Mater. Sci. Eng. A 695 (2017) 1-5.
DOI URL |
[28] |
M. Zha, H.M. Zhang, Z.Y. Yu, X.H. Zhang, X.T. Meng, H.Y. Wang, Q.C. Jiang, J. Mater. Sci. Technol. 34 (2018) 257-264.
DOI URL |
[29] |
H.Y. Wang, T.T. Feng, L. Zhang, C.G. Liu, Y. Pan, M. Zha, X.L. Nan, C. Wang, Q.C. Jiang, Mater. Des. 88 (2015) 157-161.
DOI URL |
[30] |
H. Teng, X. Zhang, Z. Zhang, T. Li, S. Cockcroft, Mater. Charact. 60 (2009)482-486.
DOI URL |
[31] |
H.Y. Wang, J.N. Zhu, J.H. Li, C. Li, M. Zha, C. Wang, Z.Z. Yan, Q.C. Jiang, Cryst Eng Comm 19 (2017) 6365-6372.
DOI URL |
[32] |
M. Ganesan, D. Dye, P.D. Lee, Metall. Mater. Trans. A 36 (2005) 2191-2204.
DOI URL |
[33] |
L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, K. Liu, J. Mater. Sci. Technol. 34 (2018) 541-550.
DOI URL |
[34] |
R. Goetz, Scr. Mater. 52 (2005) 851-856.
DOI URL |
[35] |
H.J. Kim, S.C. Jin, J.G. Jung, S.H. Park, J. Mater. Sci. Technol. 71 (2021) 87-97.
DOI URL |
[36] |
J. Rong, P.Y. Wang, M. Zha, C. Wang, X.Y. Xu, H.Y. Wang, Q.C. Jiang, J. Alloys Compd. 738 (2018) 246-254.
DOI URL |
[37] |
M. Zha, Y. Li, R.H. Mathiesen, H.J. Roven, J. Alloys Compd. 605 (2014) 131-136.
DOI URL |
[38] |
M. Zha, Z.Y. Yu, F. Qian, H.Y. Wang, Y.J. Li, R.H. Mathiesen, H.J. Roven, Scr. Mater. 155 (2018) 124-128.
DOI URL |
[39] |
H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang, A. Ma, J. Alloys Compd. 704 (2017)509-517.
DOI URL |
[40] |
H. Liu, C. Sun, C. Wang, Y. Li, J. Bai, F. Xue, A. Ma, J. Jiang, J. Mater. Sci. Technol. 59 (2020) 61-71.
DOI URL |
[41] |
L.B. Tong, J.H. Chu, Z.H. Jiang, S. Kamado, M.Y. Zheng, J. Alloys Compd. 785 (2019) 410-421.
DOI URL |
[42] | T. Bhattacharjee, C.L. Mendis, K. Oh-ishi, T. Ohkubo, K. Hono, Mater. Sci. Eng. A575 (2013) 231-240. |
[43] | C.L. Mendis, K. Oh-ishi, K.Hono, Scr. Mater. 57 (2007) 485-488. |
[44] |
C.J. Bettles, M.A. Gibson, K. Venkatesan, Scr. Mater. 51 (2004) 193-197.
DOI URL |
[45] |
S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49 (2001) 4277-4289.
DOI URL |
[46] |
G. Zhu, L. Wang, H. Zhou, J. Wang, Y. Shen, P. Tu, H. Zhu, W. Liu, P. Jin, X. Zeng, Int. J. Plast. 120 (2019) 164-179.
DOI URL |
[47] |
Z.Z. Jin, M. Zha, Z.Y. Yu, P.K. Ma, Y.K. Li, J.M. Liu, H.L. Jia, H.Y. Wang, J. Alloys Compd. 833 (2020), 155004.
DOI URL |
[48] |
J.F. Nie, Scr. Mater. 48 (2003) 1009-1015.
DOI URL |
[49] |
L. Gao, R.S. Chen, E.H. Han, J. Alloys Compd. 481 (2009) 379-384.
DOI URL |
[50] |
M.R. Barnett, M.D. Nave, A. Ghaderi, Acta Mater. 60 (2012) 1433-1443.
DOI URL |
[51] |
N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Mater. 57 (2009)4198-4208.
DOI URL |
[52] |
N. Stanford, D. Atwell, M.R. Barnett, Acta Mater. 58 (2010) 6773-6783.
DOI URL |
[53] |
X. Luo, Z. Feng, T. Yu, J. Luo, T. Huang, G. Wu, N. Hansen, X. Huang, Acta Mater. 183 (2020) 398-407.
DOI URL |
[54] |
R. Ahmad, B. Yin, Z. Wu, W.A. Curtin, Acta Mater. 172 (2019) 161-184.
DOI URL |
[55] |
S.M. Baek, H.K. Park, J.I. Yoon, J. Jung, J.H. Moon, S.G. Lee, J.H. Kim, T.S. Kim, S. Lee, N.J. Kim, H.S. Kim, Mater. Sci. Eng. A 735 (2018) 288-294.
DOI URL |
[56] |
T. Nakata, C. Xu, S. Kamado, Mater. Sci. Eng. A 772 (2020), 138690.
DOI URL |
[57] |
R. Shi, J. Miao, A.A. Luo, Scr. Mater. 171 (2019) 92-97.
DOI URL |
[58] |
H. Shou, J. Zheng, Y. Zhang, D. Long, J. Rao, Q. Liu, J. Alloys Compd. 784 (2019)1187-1197.
DOI URL |
[59] |
C. Ha, J. Bohlen, S. Yi, X. Zhou, H.G. Brokmeier, N. Schell, D. Letzig, K.U. Kainer, Mater. Sci. Eng. A 761 (2019) 138053.
DOI URL |
[60] |
B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri, S. Esmaeili, Mater. Sci. Eng. A 620 (2015) 76-84.
DOI URL |
[61] |
C.J. Li, H.F. Sun, X.W. Li, J.L. Zhang, W.B. Fang, Z.Y. Tan, J. Alloys Compd. 652 (2015) 122-131.
DOI URL |
[62] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[63] | Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloys 7 (2019) 58-71. |
[64] |
J.F. Nie, Metall. Mater. Trans. 43 (2012) 3891-3939.
DOI URL |
[65] |
J.F. Nie, Scr. Mater. 48 (2003) 1009-1015.
DOI URL |
[1] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[2] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[3] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[4] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[5] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[6] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[7] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
[8] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[9] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[10] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[11] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[12] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[13] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[14] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[15] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||