J. Mater. Sci. Technol. ›› 2021, Vol. 72: 217-222.DOI: 10.1016/j.jmst.2020.07.044
• Letter • Previous Articles Next Articles
Chaolin Tana,b,c, Youxiang Chewc, Guijun Bic,*(), Di Wanga, Wenyou Mab, Yongqiang Yanga, Kesong Zhoub,**(
)
Received:
2020-05-21
Published:
2021-05-10
Online:
2021-05-10
Contact:
Guijun Bi,Kesong Zhou
About author:
** Institute of New Materials, Guangdong Academy of Sciences, China. kszhou2004@163.com (K. Zhou).Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength[J]. J. Mater. Sci. Technol., 2021, 72: 217-222.
Fig. 2. Interfacial microstructural analysis of FGMs through OM, SEM, and EDS: (a) OM morphology, (b) SEM morphology showing circular flows in the melt pool, (c) and (d) zoom-in images of dendrites correlative to the regions I and II in (b) respectively, and (e) EDS mapping of the interface.
Fig. 3. Interfacial EBSD and XRD analyses: (a) band contrast map and (b) inverse pole ?gure showing grain orientations, and (c) XRD patterns of the bulk copper, LPBFed MS and interface of Cu-MS FGMs.
Fig. 4. Mechanical performance of Cu-MS FGM: (a) OM image showing the morphology of indentations, (b) load-displacement curves of nano-indentation, (c) photo of the interfacial stress-concentrated non-standard tensile samples indicating fracture away from the interface, and (d) and (e) fatigue performance of the LPBFed Cu-MS FGM compared with copper and copper-steels joints in pieces of literature [[17], [18], [19], [20]]. The arrows indicate run-outs.
Specimens | Flexural properties | Fatigue properties | |||
---|---|---|---|---|---|
UFS (MPa) | ε (%) | σa (MPa) | Nf (Cycles) | Failure position | |
LPBFed MS | 2386 ± 41 | 43.3 ± 1.9 | - | - | - |
Bulk T2 Cu | 521 ± 23 | 41.0 ± 5.0 | 45 | ∼2 × 107 [ | Cu |
v1-LPBFed FGM | 510 ± 17 | 10.8 ± 0.8 | 45 | 4.167 × 106 | Cu (run-out) |
v2-LPBFed FGM | 557 ± 19 | 36.6 ± 2.3 | 45 | 5.897 × 106 | Cu (run-out) |
v3-LPBFed FGM | 364 ± 17 | 7.3 ± 0.7 | 45 | 0.772 × 106 | Interface |
Table 1 Mechanical properties of the LPBF-produced Cu-MS FGMs.
Specimens | Flexural properties | Fatigue properties | |||
---|---|---|---|---|---|
UFS (MPa) | ε (%) | σa (MPa) | Nf (Cycles) | Failure position | |
LPBFed MS | 2386 ± 41 | 43.3 ± 1.9 | - | - | - |
Bulk T2 Cu | 521 ± 23 | 41.0 ± 5.0 | 45 | ∼2 × 107 [ | Cu |
v1-LPBFed FGM | 510 ± 17 | 10.8 ± 0.8 | 45 | 4.167 × 106 | Cu (run-out) |
v2-LPBFed FGM | 557 ± 19 | 36.6 ± 2.3 | 45 | 5.897 × 106 | Cu (run-out) |
v3-LPBFed FGM | 364 ± 17 | 7.3 ± 0.7 | 45 | 0.772 × 106 | Interface |
[1] |
C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, E.J. Lavernia, Mater. Sci. Eng. A 764 (2019), 138209.
DOI URL |
[2] |
Y. Li, P. He, J. Feng, Scr. Mater. 55 (2006) 171-174.
DOI URL |
[3] |
P. Wang, C.S. Lao, Z.W. Chen, Y.K. Liu, H. Wang, H. Wendrock, J. Eckert, S. Scudino, J. Mater. Sci. Technol. 36 (2020) 18-26.
DOI URL |
[4] |
Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, L. C. Zhang, Acta Mater. 126 (2017) 58-66.
DOI URL |
[5] |
S. Zhao, S.J. Li, S.G. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang, R.D.K. Misra, L.E. Murr, Acta Mater. 150 (2018) 1-15.
DOI URL |
[6] | C. Tan, X. Zhang, D. Dong, B. Attard, D. Wang, M. Kuang, W. Ma, K. Zhou, Int. J. Mach. Tools Manuf. (2020), 103592. |
[7] |
J. Kar, S.K. Roy, G.G. Roy, J. Mater, Process. Technol. 233 (2016) 174-185.
DOI URL |
[8] |
T.A. Mai, A.C. Spowage, Mater. Sci. Eng. A 374 (2004) 224-233.
DOI URL |
[9] |
S. Guo, Q. Zhou, J. Kong, Y. Peng, Y. Xiang, T. Luo, K. Wang, J. Zhu, Vacuum 128 (2016) 205-212.
DOI URL |
[10] |
L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, C.J. Kong, Mater. Des. 28 (2007) 1231-1237.
DOI URL |
[11] |
Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Mater. Charact. 94 (2014) 116-125.
DOI URL |
[12] |
M.K. Imran, S.H. Masood, M. Brandt, S. Bhattacharya, J. Mazumder, Mater. Sci. Eng. A 528 (2011) 3342-3349.
DOI URL |
[13] | C. Wallis, B. Buchmayer, M. Kitzmantel, E. Brandstätter, Arlington Virginia, 2016. |
[14] |
C. Tan, K. Zhou, W. Ma, L. Min, Mater. Des. 155 (2018) 77-85.
DOI URL |
[15] |
C. Tan, K. Zhou, M. Kuang, W. Ma, T. Kuang, Sci. Technol. Adv. Mater. 19 (2018) 746-758.
DOI URL |
[16] |
C. Tan, K. Zhou, T. Kuang, Mater. Lett. 237 (2019) 328-331.
DOI URL |
[17] |
A. Ataee, Y. Li, M. Brandt, C. Wen, Acta Mater. 158 (2018) 354-368.
DOI URL |
[18] |
M. Sahin, E. ¸Cıl, C. Misirli, J. Mater. Eng. Perform. 22 (2012) 840-847.
DOI URL |
[19] |
C.-G. Ren, D.-G. Shang, Int. J. Damage Mech. 26 (2016) 1028-1042.
DOI URL |
[20] |
P. Zhang, Q. Duan, S. Li, Z. Zhang, Philos. Mag. 88 (2008) 2487-2503.
DOI URL |
[21] |
A. Plumtree, H.A. Abdel-Raouf, Int. J. Fatigue 23 (2001) 799-805.
DOI URL |
[22] | M.F. Harun, R. Mohammad, AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 020001. |
[23] |
T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, Scr. Mater. 127 (2017) 79-83.
DOI URL |
[24] |
K. Arafune, A. Hirata, J. Cryst. Growth 197 (1999) 811-817.
DOI URL |
[1] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
[2] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[3] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[4] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[5] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[6] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[7] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[8] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
[9] | Kalaimani Markandan, Ruijing Lim, Pawan Kumar Kanaujia, Ian Seetoh, Muhammad Raziq bin Mohd Rosdi, Zhi Huey Tey, Jun Seng Goh, Yee Cheong Lam, Changquan Lai. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique [J]. J. Mater. Sci. Technol., 2020, 47(0): 243-252. |
[10] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
[11] | Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42(0): 163-174. |
[12] | Fenghua Wang, Miaolin Feng, Yanyao Jiang, Jie Dong, Zhenyan Zhang. Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 74-81. |
[13] | Chenfan Yu, Peng Zhang, Zhefeng Zhang, Wei Liu. Microstructure and fatigue behavior of laser-powder bed fusion austenitic stainless steel [J]. J. Mater. Sci. Technol., 2020, 46(0): 191-200. |
[14] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[15] | Pingli Jiang, Carsten Blawert, Jan Bohlen, Mikhail L. Zheludkevich. Corrosion performance, corrosion fatigue behavior and mechanical integrity of an extruded Mg4Zn0.2Sn alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 107-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||