J. Mater. Sci. Technol. ›› 2021, Vol. 77: 126-130.DOI: 10.1016/j.jmst.2020.10.060
• Research Article • Previous Articles Next Articles
Junjie Wanga, Shangshu Wua, Shu Fua, Sinan Liua, Zhiqiang Rena, Mengyang Yana, Shuangqin Chena, Si Lana,*(), Horst Hahna,b, Tao Fenga,*(
)
Received:
2020-09-06
Revised:
2020-10-16
Accepted:
2020-10-18
Published:
2021-06-30
Online:
2020-11-20
Contact:
Si Lan,Tao Feng
About author:
tao.feng@njust.edu.cn (T. Feng).Junjie Wang, Shangshu Wu, Shu Fu, Sinan Liu, Zhiqiang Ren, Mengyang Yan, Shuangqin Chen, Si Lan, Horst Hahn, Tao Feng. Nanocrystalline CoCrFeNiMn high-entropy alloy with tunable ferromagnetic properties[J]. J. Mater. Sci. Technol., 2021, 77: 126-130.
Fig. 3. Magnetic properties of the as-cast and laser-IGC HEAs: (a) M-H curves measured at room temperature, (b) M-T curves at the temperature range of 4 K - 400 K.
As-cast | IGC 25 °C | IGC 100 °C | IGC 200 °C | IGC 300 °C | IGC 450 °C | IGC 500 °C | IGC 600 °C | IGC 1000 °C | |
---|---|---|---|---|---|---|---|---|---|
Ms (emu/g) | 2.7 | 15 | 15.9 | 21.2 | 29.4 | 13.7 | 9.3 | 5.9 | 4.6 |
Tc (K) | 22 | 206 | 179 | 160 | 158 | 100 | 98 | 92 | 72 |
Table 1. A summary of saturation magnetization (Ms) and Curie temperatures (Tc) of the as-cast and laser-IGC samples after annealing.
As-cast | IGC 25 °C | IGC 100 °C | IGC 200 °C | IGC 300 °C | IGC 450 °C | IGC 500 °C | IGC 600 °C | IGC 1000 °C | |
---|---|---|---|---|---|---|---|---|---|
Ms (emu/g) | 2.7 | 15 | 15.9 | 21.2 | 29.4 | 13.7 | 9.3 | 5.9 | 4.6 |
Tc (K) | 22 | 206 | 179 | 160 | 158 | 100 | 98 | 92 | 72 |
Fig. 4. (a, b) In situ synchrotron XRD patterns of the as-cast and laser-IGC sample at 25-950 ℃. (c) The Rietveld refinement results for the initial laser-IGC nc-HEA. (d) The normalized integration of hexagonal, BCC and Cr-rich peak at 25-800 ℃.
Fig. 5. (a) 3D atom probe analysis of the initial laser-IGC nc-HEA, precipitates highlighted by surface encompassing regions of NiCo (purple) and FeCo (blue). (b) Proximity histograms of Ni/Co and Fe/Co nanoprecipitates.
[1] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[2] |
J. Gu, M. Song, Scr. Mater. 162 (2019) 345-349.
DOI URL |
[3] | B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Ac ta Mater. 96 (2015) 258-268. |
[4] |
J.W. Bae, J. Moon, M.J. Jang, D. Yim, D. Kim, S. Lee, H.S. Kim, Mater. Sci. Eng. A 703 (2017) 324-330.
DOI URL |
[5] |
J.H. Kim, K.R. Lim, J.W. Won, Y.S. Na, H.S. Kim, Mater. Sci. Eng. A 712 (2018) 108-113.
DOI URL |
[6] |
M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, N.D. Stepanov, Mater. Sci. Eng. A 748 (2019) 228-235.
DOI URL |
[7] | J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.-H. Yu, H.S. Kim, Mater. Res. Lett. (2019) 1-7. |
[8] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[9] |
Y.H. Xie, J.M. Liang, D.L. Zhang, Y.F. Luo, Z. Zhang, Y. Liu, J. Wang, Scr. Mater. 187 (2020) 390-394.
DOI URL |
[10] | O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, A. Dlouhý, Phys. Rev. B 96 (2017) |
[11] |
S. Huang, W. Li, X. Li, S. Schönecker, L. Bergqvist, E. Holmström, L.K. Varga, L. Vitos, Mater. Des. 103 (2016) 71-74.
DOI URL |
[12] |
M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, Z. Turgut, J. Appl. Phys. 109 (2011), 07E307.
DOI URL |
[13] |
C. Niu, C.R. Larosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1363.
DOI URL |
[14] |
S.M. Na, J.-H. Yoo, P.K. Lambert, N.J. Jones, AIP Adv. 8 (2018), 056412.
DOI URL |
[15] |
T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130 (2017) 10-18.
DOI URL |
[16] |
P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, R.P. Liu, Intermetallics 70 (2016) 82-87.
DOI URL |
[17] |
W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, Z.Y. Fu, Intermetallics 56 (2015) 24-27.
DOI URL |
[18] | D.R. Stull, G.C. Sinke, Thermodynamic Properties of the Elements: Tabulated Values of the Heat Capacity, Heat Content, Entropy, and Free Energy Function of the Solid, Liquid, and Gas States of the First 92 Elements.../Thermodynamic Properties of the Elements in Their Standard States, American Chemical Society, Washington, 1956. |
[19] |
F. Körmann, D. Ma, D.D. Belyea, M.S. Lucas, C.W. Miller, B. Grabowski, M.H.F. Sluiter, ,Appl. Phys. Lett. 107 (2015), 142404.
DOI URL |
[20] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubĕnová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
[21] |
Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Acta Mater. 151(2018) 424-431.
DOI URL |
[22] |
H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 705 (2017) 411-419.
DOI URL |
[23] |
H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 676 (2016) 294-303.
DOI URL |
[24] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68 (2013) 526-529.
DOI URL |
[25] |
W.S. Seo, J.H. Lee, X. Sun, Y. Suzuki, D. Mann, Z. Liu, M. Terashima, P.C. Yang, M.V. McConnell, D.G. Nishimura, H. Dai, Nat. Mater. 5 (2006) 971-976.
DOI URL |
[26] |
Q.B. Yan, S.J. Li, E.N. Pang, Y.Q. Wang, Mater. Lett. 120 (2014) 185-188.
DOI URL |
[27] |
H. Li, J.Y. Liao, Y.C. Du, T. You, W.W. Liao, L.L. Wen, Chem. Commun. 49 (2013) 1768-1770.
DOI URL |
[28] |
Y.J. Zhang, S.W. Or, Z.D. Zhang, Adv. Mater. Phys. Chem. 1 (2011) 7-13.
DOI URL |
[29] |
R. Kelly, A. Miotello, B. Braren, A. Gupta, K. Casey, Nucl. Instr. Meth. B 65 (1992) 187-199.
DOI URL |
[30] |
F. Garrelie, C. Champeaux, A. Catherinot, Appl. Phys. A 69 (1999) 45-50.
DOI URL |
[31] |
D.B. Geohegan, A.A. Puretzky, Appl. Phys. Lett. 67 (1995) 197-199.
DOI URL |
[32] |
R.F. Wood, J.N. Leboeuf, K.R. Chen, D.B. Geohegan, A.A. Puretzky, Appl. Surf. Sci. 127/129 (1998) 151-158.
DOI URL |
[33] |
Z. PaÂszti, G. PetoÄ, Z.E. HorvaÂth, A. Karacs, Appl. Surf. Sci. 168 (2000) 114-117.
DOI URL |
[34] |
N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov, G.A. Salishchev, Mater. Lett. 185 (2016) 1-4.
DOI URL |
[35] |
T. Burkert, L. Nordstrom, O. Eriksson, O. Heinonen, Phys. Rev. Lett. 93 (2004), 027203.
DOI URL |
[36] |
W.H. Lu, D.B. Sun, H.Y. Yu, J. Alloys. Compd. 546 (2013) 229-233.
DOI URL |
[37] |
R.S. Sundar, S.C. Deevi, Int. Mater. Rev. 50 (2005) 157-192.
DOI URL |
[38] |
J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, Acta Mater. 131 (2017) 206-220.
DOI URL |
[39] |
Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, T.J. Li, J. Alloys. Compd. 573 (2013) 96-101.
DOI URL |
[40] |
G. Liu, L. Liu, X.W. Liu, Z.J. Wang, Z.H. Han, G.J. Zhang, A. Kostkad, Intermetallics 93 (2018) 93-100.
DOI URL |
[41] |
A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloys. Compd. 683 (2016) 221-230.
DOI URL |
[42] |
H.T. Jeong, W.J. Kim, J. Mater. Sci. Technol. 71 (2020) 228-240.
DOI URL |
[43] |
Y. Dong, L. Jiang, H. Jiang, Y.P. Lu, T.M. Wang, T.J. Li, Mater. Des. 82 (2015) 91-97.
DOI URL |
[44] | P. Asghari-Rad, P. Sathiyamoorthi, N.T. Nguyen, A. Zargaran, T.S. Kim, Hyoung Seop Kim, Scr. Mater. 190 (2021) 69-74. |
[45] |
J.J. Wang, S.S. Wu, S. Fu, S.N. Liu, M.Y. Yan, Q.Q. Lai, S. Lan, H. Hahn, T. Feng, Scr. Mater. 187 (2020) 335-339.
DOI URL |
[1] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[2] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[3] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[4] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[5] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[6] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[7] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[8] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[9] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[10] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[11] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[12] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[13] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[14] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[15] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||