J. Mater. Sci. Technol. ›› 2021, Vol. 77: 131-162.DOI: 10.1016/j.jmst.2020.11.029
• Invited review • Previous Articles Next Articles
Ahmad Ostovari Moghaddama,*(
), Nataliya A. Shaburovaa, Marina N. Samodurovab, Amin Abdollahzadehc, Evgeny A. Trofimova
Received:2020-05-19
Revised:2020-07-31
Accepted:2020-09-04
Published:2021-06-30
Online:2020-11-11
Contact:
Ahmad Ostovari Moghaddam
About author:* E-mail addresses: ostovary@aut.ac.ir, ostovarim@susu.ru (A. Ostovari Moghaddam).Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review[J]. J. Mater. Sci. Technol., 2021, 77: 131-162.
Fig. 1. (a) FE-SEM morphology of gas-atomized CoCrFeMnNi powder, (b) and (c) high magnification image of particle, (d) EDS elemental maps of ball-milled HEA/TiN powder, (e) FE-SEM image of ball milled HEA/TiN powder, (f) a higher magnification of (e) and (g) schematic representation of HEA/ nano-TiN powder bed for SLM. Ruler bars: (a) 50 μm, (b) 10 μm, (c) 2 μm, (d) 10 μm, (e) 50 μm, and (f) 10 μm [45].
Fig. 3. EBSD images of the CrMnFeCoNi HEA bulk sample after different straining levels at 77 K. (a) Phase map; (b) Euler map; (c) and (d) enlarged Euler map of the area circled by the red rectangle in (b) [69].
Fig. 4. (a-d) Tensile behavior of samples fabricated by different laser powers in the scanning (S) and deposition (D) direction [71]. (e) Optical microscope (OM) images of the as built HEA in the YZ plane, (f) OM images of the rectangular areas in (e), (g) and (h) are corresponding images of the rectangular areas in (b) showing equiaxed grains and dendrite columnar grains. The white, black and blue dashed lines represent the layer boundaries, laser movement direction and melt pool boundaries, respectively [72].
| HEAs | Feedstock | Laser power (W) | Scanning speed (mm/min) | Beam size (Hatch spacing) (mm) | Feed rate (g/min) | Characteristics | Refs. |
|---|---|---|---|---|---|---|---|
| HEAs Claddings | |||||||
| CoCrCuFeNi, pre-placed | EPB | 2000 | 400 | 4.5 | - | fcc, equiaxed to dendritic transition, nano-precipitates inside the dendrites, disordered-ordered transition in inter-dendrites | [ |
| CoCrCuFeNi | fcc, dendritic (Cr rich) + inter-dendritic (Cu rich) structure | [ | |||||
| CoCrFeMnNi | PA | 1400 | 240 | 4 | 8 | fcc, No pores or cracks, ellipsoidal dendrite and interdendrite structures, high temperature softening resistance | [ |
| CoCrFeNiBx Pre-placed | EPB | 1700 | 360 | 2*4 | - | fcc + borides, | [ |
| CoCrx FeNiB Pre-placed | EPB | 1200 | 180 | 2.5 | - | fcc + borides, | [ |
| Al3 CoCrFeNi | EPB | 2000 | 300 | 4.5 | - | bcc + minor fcc fine equaixed dendritic morphology | [ |
| 6FeNiCoSiCrAlTi | 2000 | 400 | 4.5 | - | bcc, equiaxed polygonal grains, interdendritic regions | [ | |
| Alx CoCrCuFeNi (1 ≤x≤ 2) | 1200-2000 | 120-720 | - | - | bcc + fcc, the hardness and abrasion resistance increased with increasing Al content | [ | |
| AlCoCrFeNi | 1000, 1200 | 6000 | 0.6 | - | bcc1 + bcc2 + Al3Ni + FeAl3, | [ | |
| AlCoCrFeNi | 600-650 | 300 | 2.3 | - | fcc + bcc, 3-layer cladding, Ni-depletion | [ | |
| Alx CoCrFeNi | 800-1200 | 400-1200 | 3(0.75-1) | - | fcc (x = 0.3), fcc + bcc (x = 0.6), bcc (x = 0.85) grain boundary segregation and substructural cellular networks | [ | |
| Al0.8 CoCrCux FeNi (0 ≤x≤ 1) | 1850 | 120 | 1.2 | 5.6 | bcc1 + B2 (x = 0), bcc1 + B2 + fcc (x ≥ 0.25), Cu reduces the cracking sensitivity | [ | |
| AlCoCrNiTiV, Preplaced on substrate | 2000 | 2400 | 3 | - | B2 matrix and (Co, Ni)Ti2 compounds with few β-Ti phases | [ | |
| AlCoCuFeNi | 800-2000 | 600 | 3 | - | fcc + bcc, Fe-rich bcc interdendritic region and Cu-rich fcc dendritic region | [ | |
| AlCoCrFeNiTi | 2000 | 300 | 4.6 | 3.3 | bcc + B2 + Ti-rich intermetallic, dendritic microstructure | [ | |
| AlCoCrCux FeNiSi0.5 Preplaced on substrate | 2000 | 600 | 4 | - | bcc + fcc, Cu-poor dendritic bcc, Cu-rich interdendritic fcc | [ | |
| Al2 CrFeNiMox (0 ≤x≤ 2) | 900 | 240 | 4 | - | bcc1 + bcc2, equiaxed grains, eutectic structure in the interdendritic regions at Mo = 2 at. %, | [ | |
| Al1.8 CoCrCu0.7 FeNiB0.3 Si0.1 Preplaced | 2000 | 400 | 4.5 | - | bcc, thermally stable up to 1000 °C | [ | |
| AlCoCrCu0.5 FeNiSi Preplaced | 3000 | 600 | 4 | - | bcc, fine dendritic structure with nanoprecipitates, | [ | |
| TiZrNbWMo Sprayed | 3000 | 400 | 2.3 | - | bcc, dendritic (rich in W) and interdendritic (rich in Nb, Mo β-Ti xW1-x precipitates structures | [ | |
| CrMoTaWZr Sprayed | 400-1100 | 6000 | 0.6 | - | bcc1 (rich in Cr, Ta, Zr) + bcc2 (rich in Mo, Ta, W) + Laves phase ((Cr/Ta)2Zr) | [ | |
| MoFe1.5 CrTiWAlNbx (x= 1.5, 2, 2.5, 3) | 3000 | 240 | 10*2 | - | bcc + (Nb, Ti)C carbides + C14-Laves, cellular (x ≤ 2) and columnar (x > 2) microstructures | [ | |
| AlTiVMoNb Preplaced | 3700 | 600 | - | - | bcc, dendritic (rich in Ti), interdendritic (rich in Al, Nb, Mo) | [ | |
| AlCrSiTiV | 2000 | 180 | 2.5 (1.5) | 2 | bcc + (Ti,V)5Si3 | [ | |
| CoFeNi2 Nbx V0.5 (x= 0.75, 1) | 1400-1800 | 240 | 4 | - | fcc + Fe2Nb-type Laves, cellular dendritic | [ | |
| B3.25 Co14.5 Cr32 Fe36 Ni10 Si4.25 | 467 | 100 | 2.3 | - | fcc-γ(Fe, Ni) + bcc-CoFe15.7 + amorphous phase (∼ 49 %) | [ | |
| B14 Co34 Cr29 Fe8 Ni8 Si7 | PA | 520 | 100 | 2.2 | - | Amorphous layer + β-Co phase, layered microstructure | [ |
| AlCoCrCu0.9 FeNi | 3000 | 600 | 4 | - | bcc, Cu-rich precipitates, high corrosion resistance | [ | |
| AlCoCrCuFeNi | 300 | 120 | 1 | - | bcc + fcc, a beneath Cu-diluted layer, | [ | |
| Bulk HEAs | |||||||
| CoCrFeMnNi | PA | 1700 | 120 | - | 10 | fcc, No segregation | [ |
| 1000-1400 | 400, 500 | - | 7-9 | fcc, anisotropic properties at 1000, 1200 W, isotropic properties at 1400 W, No segregation | [ | ||
| 880 | 600 | 2.5 (1.2) | 8.6 | fcc, Mn and Ni segregation in interdendritic region | [ | ||
| 600-1000 | 800 | 2 (1) | 10 | [ | |||
| 400 | 300 | 0.6 (0.46) | - | fcc, low porosity, cellular morphology, Mn and Ni enriched inter-cellular | [ | ||
| 350- 400 | 400-600 | -(0.8) | [ | ||||
| CoCrFeNiMo0.2 | 1000-1400 | 400 | - | 7-9 | fcc, columnar grains morphology, larger columnar grains at 1400 W, better corrosion resistance than 304/316 L | [ | |
| CoCrFeNiNbx | 1600-1650 | 480 | 3 (1.5) | - | fcc + laves phase (hcp), excellent printability, (CrFe)(CoNi)Nb type Laves phase was rich in Nb and poor in Cr and Fe | [ | |
| CrCoNi | 380-400 | 846 | (0.4) | 2.52 | fcc, few pore defects, columnar grain | [ | |
| AlCoCrFeNi | - | 150-2400 | 0.15 | - | bcc-type (disordered A2 + ordered B2) | [ | |
| AlCoCrFeNi | 80 KJ | 1200 | - | - | bcc, dendrite (50-300 μm) and interdendrite phases, | [ | |
| Al0.3 CoCrFeNi | 300 | 1020 | 0.5 (0.381) | - | fcc, formation of Al-Ni rich solute nanoclusters during DLD, and nano L12 precipitates during annealing | [ | |
| AlCoCrFeNi2.1 | - | 900 | 875 | - | 30 | Ordered L12 + disordered bcc, L12 dendrites and L12 + bcc eutectics phases, | [ |
| Alx CoCrFeNi (x= 0.3, 0.6, 0.85) | PA + Al | 800 | 800 | 4 | - | fcc (x = 0.3), fcc + bcc (x = 0.6), bcc (x = 0.85), Al segregation in grain boundaries (x = 0.3), Al and Ni enriched inter-plates (x = 0.6), Fe and Cr segregated into cuboidal particle phase, and Ni and Al segregated into matrix phase (x = 0.85) | [ |
| Alx CoCrFeNi2- x (x= 0.3, 1) | EPB | - | 600 | 0.25 | - | Al1.7FeCoCrNi0.3 (A2 + B2), AlFeCoCrNi (A2 + B2 + L12), Al0.7FeCoCrNi1.3 (γ + B2) Al0.3FeCoCrNi1.7 (γ), Endritic : equiaxed : columnar with increasing Al/Ni ratio, | [ |
| Al0.3 CoCrFeN | - | - | - | - | - | fcc, large columnar grains, strong texture development, asymmetric tension and compression deformation | [ |
| Alx CoCrFeNi (x= 0.3, 0.7) | EPB | 250-300 | 900 | - | 1.5 | Oxidation resistance: x = 0.7 > x = 0.3, formation of an exterior Cr2O3 scale with a beneath Al2O3 subscale | [ |
| AlCrCuFeNi | EPB | 1600-2200 | 1200 | - | - | fcc + bcc, dendritic microstructure | [ |
| Alx CoCrFeNi (0.51≤x≤1.25) | 200 | 762 | - | - | fcc + bcc (x < 1)), bcc/B2 (x = 1) Cellular microstructure, severe lattice distortions associated with the addition of Al, | [ | |
| (Al added to CoCrFeNi melt pool) | |||||||
| MoNbTaW | EPB | S 1 (400), S 2 (4500) | 150, 500 | - | - | Cracking due to the brittle nature of MoNbTaW, deviated stoichiometry from the starting elemental composition | [ |
| TiZrNbHfTa | EPB | 2900 | - | 3 | 2.3 | bcc, equiaxed grain, crack-free cylinder (d: 3 mm, l: 10 mm) | [ |
| MoNbTaWx | bcc, grain size: 20 μm, dendrite size: 4 μm | [ | |||||
| NbMoTa | bcc, porosities and intergranular cracks | [ | |||||
| MoNbTaW | EPB | 800 S1 1000 R | 254 S1 1778 R | 0.6 (0.381) | bcc + minor inclusion of un-melted particles | [ | |
| Compositionally graded HEAs Alx CoCrFeNi2 (0≤x≤1.5) | EPB | Nd:YAG laser: 500 W, nearinfrared laser radiation at a wavelength of 1.064 μm | Variable | fcc (x ≤ 0.4), fcc + bcc (x ≥ 0.8), dendritic structure, segregation of Cu into interdendritic regions | [ | ||
| AlCox Cr1- x FeNi (0≤x≤1) | 200-300 | 400 | - | bcc + B2, spinodal decomposition with decreasing x, a second grain boundary precipitate fcc phase at x = 0.6, 0.8. | [ | ||
| Alx CoCrFeNi (0.3 ≤x≤ 0.7) | 300 | 400 | 0.5 | fcc (x = 0.3), fcc + B2 (x = 0.7), anisotropic grains, B2 precipitates at fcc grain boundaries, eutectic lamellar morphology | [ | ||
| AlCrFeMoVx (0≤x≤1) | 400 | 1020 | (0.381) | bcc, equiaxed to elongated grains with increasing V, hardness increased with increasing V | [ | ||
| Nb50- x Ti25 Ta25 Zrx (0 ≤x≤ 50) | EPB | 500-2500 | 100-600 | 0.4 | bcc, coarse grain (x ≤ 25), bcc + Ta-rich-bcc2, equiaxed grains (x > 25) | [ | |
| (MoNbTa)1- x Wx (MoNbW)1- x Tax (MoTaW)1- x Nbx (NbTaW)1- x Mox | EPB | 1800 | 300 | 2 | bcc, severe porosity and cracking, Nb-rich, Ta-, W- poor | [ | |
Table 1. Summary of DLD processing parameters and the characteristics of fabricated HEAs.
| HEAs | Feedstock | Laser power (W) | Scanning speed (mm/min) | Beam size (Hatch spacing) (mm) | Feed rate (g/min) | Characteristics | Refs. |
|---|---|---|---|---|---|---|---|
| HEAs Claddings | |||||||
| CoCrCuFeNi, pre-placed | EPB | 2000 | 400 | 4.5 | - | fcc, equiaxed to dendritic transition, nano-precipitates inside the dendrites, disordered-ordered transition in inter-dendrites | [ |
| CoCrCuFeNi | fcc, dendritic (Cr rich) + inter-dendritic (Cu rich) structure | [ | |||||
| CoCrFeMnNi | PA | 1400 | 240 | 4 | 8 | fcc, No pores or cracks, ellipsoidal dendrite and interdendrite structures, high temperature softening resistance | [ |
| CoCrFeNiBx Pre-placed | EPB | 1700 | 360 | 2*4 | - | fcc + borides, | [ |
| CoCrx FeNiB Pre-placed | EPB | 1200 | 180 | 2.5 | - | fcc + borides, | [ |
| Al3 CoCrFeNi | EPB | 2000 | 300 | 4.5 | - | bcc + minor fcc fine equaixed dendritic morphology | [ |
| 6FeNiCoSiCrAlTi | 2000 | 400 | 4.5 | - | bcc, equiaxed polygonal grains, interdendritic regions | [ | |
| Alx CoCrCuFeNi (1 ≤x≤ 2) | 1200-2000 | 120-720 | - | - | bcc + fcc, the hardness and abrasion resistance increased with increasing Al content | [ | |
| AlCoCrFeNi | 1000, 1200 | 6000 | 0.6 | - | bcc1 + bcc2 + Al3Ni + FeAl3, | [ | |
| AlCoCrFeNi | 600-650 | 300 | 2.3 | - | fcc + bcc, 3-layer cladding, Ni-depletion | [ | |
| Alx CoCrFeNi | 800-1200 | 400-1200 | 3(0.75-1) | - | fcc (x = 0.3), fcc + bcc (x = 0.6), bcc (x = 0.85) grain boundary segregation and substructural cellular networks | [ | |
| Al0.8 CoCrCux FeNi (0 ≤x≤ 1) | 1850 | 120 | 1.2 | 5.6 | bcc1 + B2 (x = 0), bcc1 + B2 + fcc (x ≥ 0.25), Cu reduces the cracking sensitivity | [ | |
| AlCoCrNiTiV, Preplaced on substrate | 2000 | 2400 | 3 | - | B2 matrix and (Co, Ni)Ti2 compounds with few β-Ti phases | [ | |
| AlCoCuFeNi | 800-2000 | 600 | 3 | - | fcc + bcc, Fe-rich bcc interdendritic region and Cu-rich fcc dendritic region | [ | |
| AlCoCrFeNiTi | 2000 | 300 | 4.6 | 3.3 | bcc + B2 + Ti-rich intermetallic, dendritic microstructure | [ | |
| AlCoCrCux FeNiSi0.5 Preplaced on substrate | 2000 | 600 | 4 | - | bcc + fcc, Cu-poor dendritic bcc, Cu-rich interdendritic fcc | [ | |
| Al2 CrFeNiMox (0 ≤x≤ 2) | 900 | 240 | 4 | - | bcc1 + bcc2, equiaxed grains, eutectic structure in the interdendritic regions at Mo = 2 at. %, | [ | |
| Al1.8 CoCrCu0.7 FeNiB0.3 Si0.1 Preplaced | 2000 | 400 | 4.5 | - | bcc, thermally stable up to 1000 °C | [ | |
| AlCoCrCu0.5 FeNiSi Preplaced | 3000 | 600 | 4 | - | bcc, fine dendritic structure with nanoprecipitates, | [ | |
| TiZrNbWMo Sprayed | 3000 | 400 | 2.3 | - | bcc, dendritic (rich in W) and interdendritic (rich in Nb, Mo β-Ti xW1-x precipitates structures | [ | |
| CrMoTaWZr Sprayed | 400-1100 | 6000 | 0.6 | - | bcc1 (rich in Cr, Ta, Zr) + bcc2 (rich in Mo, Ta, W) + Laves phase ((Cr/Ta)2Zr) | [ | |
| MoFe1.5 CrTiWAlNbx (x= 1.5, 2, 2.5, 3) | 3000 | 240 | 10*2 | - | bcc + (Nb, Ti)C carbides + C14-Laves, cellular (x ≤ 2) and columnar (x > 2) microstructures | [ | |
| AlTiVMoNb Preplaced | 3700 | 600 | - | - | bcc, dendritic (rich in Ti), interdendritic (rich in Al, Nb, Mo) | [ | |
| AlCrSiTiV | 2000 | 180 | 2.5 (1.5) | 2 | bcc + (Ti,V)5Si3 | [ | |
| CoFeNi2 Nbx V0.5 (x= 0.75, 1) | 1400-1800 | 240 | 4 | - | fcc + Fe2Nb-type Laves, cellular dendritic | [ | |
| B3.25 Co14.5 Cr32 Fe36 Ni10 Si4.25 | 467 | 100 | 2.3 | - | fcc-γ(Fe, Ni) + bcc-CoFe15.7 + amorphous phase (∼ 49 %) | [ | |
| B14 Co34 Cr29 Fe8 Ni8 Si7 | PA | 520 | 100 | 2.2 | - | Amorphous layer + β-Co phase, layered microstructure | [ |
| AlCoCrCu0.9 FeNi | 3000 | 600 | 4 | - | bcc, Cu-rich precipitates, high corrosion resistance | [ | |
| AlCoCrCuFeNi | 300 | 120 | 1 | - | bcc + fcc, a beneath Cu-diluted layer, | [ | |
| Bulk HEAs | |||||||
| CoCrFeMnNi | PA | 1700 | 120 | - | 10 | fcc, No segregation | [ |
| 1000-1400 | 400, 500 | - | 7-9 | fcc, anisotropic properties at 1000, 1200 W, isotropic properties at 1400 W, No segregation | [ | ||
| 880 | 600 | 2.5 (1.2) | 8.6 | fcc, Mn and Ni segregation in interdendritic region | [ | ||
| 600-1000 | 800 | 2 (1) | 10 | [ | |||
| 400 | 300 | 0.6 (0.46) | - | fcc, low porosity, cellular morphology, Mn and Ni enriched inter-cellular | [ | ||
| 350- 400 | 400-600 | -(0.8) | [ | ||||
| CoCrFeNiMo0.2 | 1000-1400 | 400 | - | 7-9 | fcc, columnar grains morphology, larger columnar grains at 1400 W, better corrosion resistance than 304/316 L | [ | |
| CoCrFeNiNbx | 1600-1650 | 480 | 3 (1.5) | - | fcc + laves phase (hcp), excellent printability, (CrFe)(CoNi)Nb type Laves phase was rich in Nb and poor in Cr and Fe | [ | |
| CrCoNi | 380-400 | 846 | (0.4) | 2.52 | fcc, few pore defects, columnar grain | [ | |
| AlCoCrFeNi | - | 150-2400 | 0.15 | - | bcc-type (disordered A2 + ordered B2) | [ | |
| AlCoCrFeNi | 80 KJ | 1200 | - | - | bcc, dendrite (50-300 μm) and interdendrite phases, | [ | |
| Al0.3 CoCrFeNi | 300 | 1020 | 0.5 (0.381) | - | fcc, formation of Al-Ni rich solute nanoclusters during DLD, and nano L12 precipitates during annealing | [ | |
| AlCoCrFeNi2.1 | - | 900 | 875 | - | 30 | Ordered L12 + disordered bcc, L12 dendrites and L12 + bcc eutectics phases, | [ |
| Alx CoCrFeNi (x= 0.3, 0.6, 0.85) | PA + Al | 800 | 800 | 4 | - | fcc (x = 0.3), fcc + bcc (x = 0.6), bcc (x = 0.85), Al segregation in grain boundaries (x = 0.3), Al and Ni enriched inter-plates (x = 0.6), Fe and Cr segregated into cuboidal particle phase, and Ni and Al segregated into matrix phase (x = 0.85) | [ |
| Alx CoCrFeNi2- x (x= 0.3, 1) | EPB | - | 600 | 0.25 | - | Al1.7FeCoCrNi0.3 (A2 + B2), AlFeCoCrNi (A2 + B2 + L12), Al0.7FeCoCrNi1.3 (γ + B2) Al0.3FeCoCrNi1.7 (γ), Endritic : equiaxed : columnar with increasing Al/Ni ratio, | [ |
| Al0.3 CoCrFeN | - | - | - | - | - | fcc, large columnar grains, strong texture development, asymmetric tension and compression deformation | [ |
| Alx CoCrFeNi (x= 0.3, 0.7) | EPB | 250-300 | 900 | - | 1.5 | Oxidation resistance: x = 0.7 > x = 0.3, formation of an exterior Cr2O3 scale with a beneath Al2O3 subscale | [ |
| AlCrCuFeNi | EPB | 1600-2200 | 1200 | - | - | fcc + bcc, dendritic microstructure | [ |
| Alx CoCrFeNi (0.51≤x≤1.25) | 200 | 762 | - | - | fcc + bcc (x < 1)), bcc/B2 (x = 1) Cellular microstructure, severe lattice distortions associated with the addition of Al, | [ | |
| (Al added to CoCrFeNi melt pool) | |||||||
| MoNbTaW | EPB | S 1 (400), S 2 (4500) | 150, 500 | - | - | Cracking due to the brittle nature of MoNbTaW, deviated stoichiometry from the starting elemental composition | [ |
| TiZrNbHfTa | EPB | 2900 | - | 3 | 2.3 | bcc, equiaxed grain, crack-free cylinder (d: 3 mm, l: 10 mm) | [ |
| MoNbTaWx | bcc, grain size: 20 μm, dendrite size: 4 μm | [ | |||||
| NbMoTa | bcc, porosities and intergranular cracks | [ | |||||
| MoNbTaW | EPB | 800 S1 1000 R | 254 S1 1778 R | 0.6 (0.381) | bcc + minor inclusion of un-melted particles | [ | |
| Compositionally graded HEAs Alx CoCrFeNi2 (0≤x≤1.5) | EPB | Nd:YAG laser: 500 W, nearinfrared laser radiation at a wavelength of 1.064 μm | Variable | fcc (x ≤ 0.4), fcc + bcc (x ≥ 0.8), dendritic structure, segregation of Cu into interdendritic regions | [ | ||
| AlCox Cr1- x FeNi (0≤x≤1) | 200-300 | 400 | - | bcc + B2, spinodal decomposition with decreasing x, a second grain boundary precipitate fcc phase at x = 0.6, 0.8. | [ | ||
| Alx CoCrFeNi (0.3 ≤x≤ 0.7) | 300 | 400 | 0.5 | fcc (x = 0.3), fcc + B2 (x = 0.7), anisotropic grains, B2 precipitates at fcc grain boundaries, eutectic lamellar morphology | [ | ||
| AlCrFeMoVx (0≤x≤1) | 400 | 1020 | (0.381) | bcc, equiaxed to elongated grains with increasing V, hardness increased with increasing V | [ | ||
| Nb50- x Ti25 Ta25 Zrx (0 ≤x≤ 50) | EPB | 500-2500 | 100-600 | 0.4 | bcc, coarse grain (x ≤ 25), bcc + Ta-rich-bcc2, equiaxed grains (x > 25) | [ | |
| (MoNbTa)1- x Wx (MoNbW)1- x Tax (MoTaW)1- x Nbx (NbTaW)1- x Mox | EPB | 1800 | 300 | 2 | bcc, severe porosity and cracking, Nb-rich, Ta-, W- poor | [ | |
Fig. 5. Potentiodynamic polarization curves of alloys in (a) 3.5 wt % NaCl and (b) 1.0 M H2SO4 solutions, (c) engineering tensile curves of the as-built CoCrFeNiMo0.2 high entropy alloys at 77 K [76].
Fig. 6. The backscattered electron (BSE) images and corresponding EDS elemental maps of the as-built (a) CoCrFeNiNb0.1 and (b) CoCrFeNiNb0.2 HEAs [77].
Fig. 7. BF-STEM graphs along the 〈101〉 zone axis showing dislocations in the as built (a, b) and multiple slip systems in deformed (engineering strain, ε = 58 %) AM CrCoNi alloy with lower strain rate (LSR) of 2 × 10-5 s-1 (c). Selected area diffraction (SAD) pattern (d) taken at the red circle in (c) showing marked twin spots. High-resolution HAADF-STEM images along the < 101 > zone axis of the AM CrCoNi sample (e, f) deformed ( ε = 58 %) with LSR (2 × 10-5 s-1), (g) Fast Fourier transformation (FFT) of the TEM image of (f, h) deformed (ε = 47 %) with HSR (2 × 10-3 s-1). (i) True stress-strain curves and stacking fault energies (SFE, mJ/m2) as a function of true strain [81].
Fig. 9. (a) A schematic representation of compositionally graded AlxCoCrFeNi HEA. BSE graphs, high magnification EBSD inverse pole figures, and the corresponding phase maps of region I (b), transition region (c) and region II (d) of graded AlxCoCrFeNi HEA. Hardness profile across the longitudinal section (e) and dynamic true stress-true strain curves of different samples (f) [110].
Fig. 10. (a) Photo of the fabricated specimen, (b) BSE image of the longitudinal section of specimen. The white dashed line at the bottom shows the substrate surface. The EDX elemental profile is the average of measured data along the green rectangles shown at the top. (c) Elemental (colored lines) and hardness (black symbols) profiles of the DLD specimen from the top (left) to the bottom (right) of the sample (d) EBSD phase maps (top row) and grain orientation maps, bcc unit cell, (bottom row) of the outlined areas as A, B, C in (b). Arrows indicate areas with small and large grain sizes in region A [123].
Fig. 11. (a) SEM image showing the cross sectional morphology of the coating. (b), (c) and (d) are magnified images of outlined rectangular regions B, C and D in (a), respectively [130].
| HEAs | P(W) | v (mm s-1 ) | h(μm) | t(μm) | VED (J/mm3 ) | Relative density (%) | Phase | Defect | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| CoCrFeNi | 200 | 300 | - | 50 20 | - | - | fcc | Porosity | [ |
| 60, 90, 120, 150 | 100, 300, 600, 900, 1200, 1500 | 50 | 20 | 100-1500 (250) | Porosity (%): 1-11.8 (0.09) | fcc + bcc | Porosity | [ | |
| 110-280 | 800-2000 | 45-75 | 30 | (40)- (104.3) | (7.5)- (8.12) | - | Micropores | [ | |
| Co1.5 CrFeNi1.5 Ti0.5 Mo0.1 | 160-270 (160) | 540-1350 (650) | 80-120 (100) | 40 | (61.5) | (99.3) | fcc + IMCs | - | [ |
| CoCrFeMnNi | 400 | 800-4000 | 90 | 30 | 74 | 98.2 | fcc | Cracks and pores | [ |
| 160-290 (240) | 1500-2500 (2000) | 50 | 40 | (60) | (99.2) | fcc | - | [ | |
| 110-280 | 800-2000 | 45-75 | 30 | (40)- (259.3) | (7.1)- (7.89) | fcc | Micropores | [ | |
| 90 | 600 | 80 | 25 | 75 | - | fcc | - | [ | |
| 400 | (800), 1200, 2000, 2500 | 90 | 30 | (185.2) 123.46, 74.07, 59.26 | - | fcc | Irregular pores, grainboundary cracks, Defects increased at higher scanning speed | [ | |
| 150 | 500 | 50 | 60 | 100 | - | fcc | - | [ | |
| 250-(370) | 500-2500 (1500) | 80 | 40 | 62.5-115.6 (77.08) | (99.5) | - | Micropores | [ | |
| AlCoCrFeNi | 250-400 | 1000 | 90 | 40 | 69.4, 83.3, (97.2) 111.1 | (98.4) | A2 + B2 | Porosity | [ |
| 98 | 2000 | 52 | 20 | 47.1 | - | A2 + B2 | Cracks + porosity | [ | |
| Al0.5CoCrFeNi | 400 | 1600 | 90 | 40 | 69.4 | - | fcc | No defects | [ |
| 160-(320) | 400-2000 (800) | (60)-80 | 50 | (133.3) | (99.92) | fcc + bcc | No defects at optimized parameters | [ | |
| Al0.3 CoCrFeNi | 150-170 | 1100-1300 | 45 | 25-30 | 85-137 | 99.9 | fcc | No Defects | [ |
| Al0.26 CoFeMnNi | 120, 200 | 350-650 | 60-90 | 30 | 68.4-246.9 | 99.5 | fcc | - | [ |
| AlCoCrCuFeNi | 160-400 | 400-1600 | 90 | 40 | 52.08 | 7.08 | B2 + A2 + fcc | Microcracks + micropores, increased with increasing VED | [ |
| 69.4 | 7.058 | ||||||||
| 78.1 | 7.054 | ||||||||
| 83.3 | 7.048 | ||||||||
| AlCoCuFeNi | 205 | 1000 | 40 | 30 | 170.8 | - | B2 (printed), B2 + fcc (Anneal) | No cracking or porosity | [ |
| AlCrCuFeNi | 300 | 600 | 60 | 40 | 208.3 | 99.82 | A2 + B2 | Spherical pores + vertical MCs | [ |
| 80 | 156.25 | 99.8 | Narrow MCs | ||||||
| 100 | 125 | 99.63 | Long MCs | ||||||
| 120 | 104.17 | 99.6 | |||||||
| 400 | 80 | 234.4 | 99.7 | Spherical pores + vertical MCs | |||||
| 600 | 156.25 | 99.8 | Narrow microcracks | ||||||
| 800 | 117.2 | 99.5 | Irregular pores + Microcracks | ||||||
| 1000 | 93.75 | 99.3 | |||||||
| 1200 | 78.13 | 99 | |||||||
| AlCrCuFeNix (x= 2.0, 2.5, 2.75, 3.0) | 200 | 400 | 80 | 20 | 312.5 | 99.7 | fcc + B2, x = 3 | No microcracks for x = 3 | [ |
| AlCrFeNiV | 140 | 900 | 50 | - | - | 99.88 | fcc + nano L12 | - | [ |
| AlCoFeNiSm0.1 V0.9 | 200 | 10 | 300 | 200 | 333.3 | fcc | No porosity, No significant crack | [ | |
| AlCoFeNiSm0.1 TiV0.9 | |||||||||
| AlCoFeNiSm0.05 TiV0.95 Zr | |||||||||
| MoNbTaW | 400 | 250 | 100 | 100 | 160 | - | bcc | - | [ |
| 375-325 | 250-600 | 100 | 100 | - | - | bcc | No crack | ||
| Ni6Cr4WFe9Ti | 300 | 2500 | 80 | 60 | 25 | - | fcc (γ) + unknown phase | Cracks + micropores | [ |
| 350 | 2000 | 70 | 60 | 33.3 | - | [ | |||
| Fe40 Mn20 Co20 Cr15 Si5 | 140 | 800 | 100 | 40 | 43.75 | - | ε-hcp + γ-fcc | No cracks, small void (vol. % = 0.1) | [ |
Table 2. Summary of processing parameters, relative density, phase and defects in SLM-printed HEAs. The corresponding values are shown in brackets.
| HEAs | P(W) | v (mm s-1 ) | h(μm) | t(μm) | VED (J/mm3 ) | Relative density (%) | Phase | Defect | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| CoCrFeNi | 200 | 300 | - | 50 20 | - | - | fcc | Porosity | [ |
| 60, 90, 120, 150 | 100, 300, 600, 900, 1200, 1500 | 50 | 20 | 100-1500 (250) | Porosity (%): 1-11.8 (0.09) | fcc + bcc | Porosity | [ | |
| 110-280 | 800-2000 | 45-75 | 30 | (40)- (104.3) | (7.5)- (8.12) | - | Micropores | [ | |
| Co1.5 CrFeNi1.5 Ti0.5 Mo0.1 | 160-270 (160) | 540-1350 (650) | 80-120 (100) | 40 | (61.5) | (99.3) | fcc + IMCs | - | [ |
| CoCrFeMnNi | 400 | 800-4000 | 90 | 30 | 74 | 98.2 | fcc | Cracks and pores | [ |
| 160-290 (240) | 1500-2500 (2000) | 50 | 40 | (60) | (99.2) | fcc | - | [ | |
| 110-280 | 800-2000 | 45-75 | 30 | (40)- (259.3) | (7.1)- (7.89) | fcc | Micropores | [ | |
| 90 | 600 | 80 | 25 | 75 | - | fcc | - | [ | |
| 400 | (800), 1200, 2000, 2500 | 90 | 30 | (185.2) 123.46, 74.07, 59.26 | - | fcc | Irregular pores, grainboundary cracks, Defects increased at higher scanning speed | [ | |
| 150 | 500 | 50 | 60 | 100 | - | fcc | - | [ | |
| 250-(370) | 500-2500 (1500) | 80 | 40 | 62.5-115.6 (77.08) | (99.5) | - | Micropores | [ | |
| AlCoCrFeNi | 250-400 | 1000 | 90 | 40 | 69.4, 83.3, (97.2) 111.1 | (98.4) | A2 + B2 | Porosity | [ |
| 98 | 2000 | 52 | 20 | 47.1 | - | A2 + B2 | Cracks + porosity | [ | |
| Al0.5CoCrFeNi | 400 | 1600 | 90 | 40 | 69.4 | - | fcc | No defects | [ |
| 160-(320) | 400-2000 (800) | (60)-80 | 50 | (133.3) | (99.92) | fcc + bcc | No defects at optimized parameters | [ | |
| Al0.3 CoCrFeNi | 150-170 | 1100-1300 | 45 | 25-30 | 85-137 | 99.9 | fcc | No Defects | [ |
| Al0.26 CoFeMnNi | 120, 200 | 350-650 | 60-90 | 30 | 68.4-246.9 | 99.5 | fcc | - | [ |
| AlCoCrCuFeNi | 160-400 | 400-1600 | 90 | 40 | 52.08 | 7.08 | B2 + A2 + fcc | Microcracks + micropores, increased with increasing VED | [ |
| 69.4 | 7.058 | ||||||||
| 78.1 | 7.054 | ||||||||
| 83.3 | 7.048 | ||||||||
| AlCoCuFeNi | 205 | 1000 | 40 | 30 | 170.8 | - | B2 (printed), B2 + fcc (Anneal) | No cracking or porosity | [ |
| AlCrCuFeNi | 300 | 600 | 60 | 40 | 208.3 | 99.82 | A2 + B2 | Spherical pores + vertical MCs | [ |
| 80 | 156.25 | 99.8 | Narrow MCs | ||||||
| 100 | 125 | 99.63 | Long MCs | ||||||
| 120 | 104.17 | 99.6 | |||||||
| 400 | 80 | 234.4 | 99.7 | Spherical pores + vertical MCs | |||||
| 600 | 156.25 | 99.8 | Narrow microcracks | ||||||
| 800 | 117.2 | 99.5 | Irregular pores + Microcracks | ||||||
| 1000 | 93.75 | 99.3 | |||||||
| 1200 | 78.13 | 99 | |||||||
| AlCrCuFeNix (x= 2.0, 2.5, 2.75, 3.0) | 200 | 400 | 80 | 20 | 312.5 | 99.7 | fcc + B2, x = 3 | No microcracks for x = 3 | [ |
| AlCrFeNiV | 140 | 900 | 50 | - | - | 99.88 | fcc + nano L12 | - | [ |
| AlCoFeNiSm0.1 V0.9 | 200 | 10 | 300 | 200 | 333.3 | fcc | No porosity, No significant crack | [ | |
| AlCoFeNiSm0.1 TiV0.9 | |||||||||
| AlCoFeNiSm0.05 TiV0.95 Zr | |||||||||
| MoNbTaW | 400 | 250 | 100 | 100 | 160 | - | bcc | - | [ |
| 375-325 | 250-600 | 100 | 100 | - | - | bcc | No crack | ||
| Ni6Cr4WFe9Ti | 300 | 2500 | 80 | 60 | 25 | - | fcc (γ) + unknown phase | Cracks + micropores | [ |
| 350 | 2000 | 70 | 60 | 33.3 | - | [ | |||
| Fe40 Mn20 Co20 Cr15 Si5 | 140 | 800 | 100 | 40 | 43.75 | - | ε-hcp + γ-fcc | No cracks, small void (vol. % = 0.1) | [ |
Fig. 12. (a) Bright-field TEM micrograph indicating two {111} glide traces intersecting at 70.5°, the inset is SAED of the red circled region at [011] zone-axis; (b) Magnified TEM image at the [001] zone axis of B2 phase, the inset shows the SAED of the blue circled region; (c) HRTEM micrograph at the [001] zone axis of B2 phase. (d) HRTEM image of a B2 lamella at the [111] zone axis; (e) Magnified HRTEM image of the yellow dotted region in (d), the inset is the corresponding FFT pattern; (f) Magnified HRTEM image of the white outlined region in (d), inset is the FFT pattern of the yellow dotted box [151].
Fig. 14. The phase maps and IPF maps of the cast and the SEBM specimens acquired at the cross-section perpendicular to the build direction at the top and bottom sections [34].
Fig. 15. (a) EBSD showing the polycrystalline nature of HEA powder and (b) XRD patterns of the powder and the as built specimen. OM images obtained from (c) XZ and (d) XY planes indicating the epitaxial growth and cellular structure of grains in the SEBM-built part [35].
Fig. 16. (a) OM images of the as-built Fe49.5Mn30Co10Cr10C0.5 HEA. (b) SE image of dotted region in (a). The inset displays the equiaxed cellular structures. (c) STEM micrograph showing the equiaxed cellular structures. The inset shows the distance across five {111} planes in HRTEM image. (d) (a1-a4) EBSD phase and GBs maps revealing microstructural evolution at different strain levels. TEM images of deformed structure for 4 % strain (e, f) and 12 % strain (g). The insets show the SAED pattern [160].
Fig. 17. (a) Tensile behavior of the SLM-built (CoCrFeMnNi)99C1 HEA along the x and y directions. (b) The yield strength versus elongation values for (CoCrFeMnNi)99C1 and some alloys referenced in their work [162].
Fig. 18. (a) A 2D diffractogram of mixed oxide prior (left) and after (right) the TGA measurement in H2 disclosing the complete transition of blended oxide to a fcc CoCrFeNi HEA. Scale bar is 20 nm-1. (b) SEM of the blended oxide powder prior to TGA, indicating agglomerates (<10 μm) of sub-micron particles. Scale bars are 5 μm and 1 μm (inset). (c) Micro-lattice with 200 μm diameter struts before and after sintering. Scale bars are 3 mm. In situ XRD 2D-phase evolution plot (temperature vs. the scattering vector q, with diffraction peak intensity as color map) illustrating oxides reductions and the complex route to the synthesis of CoCrFeNi HEA during heating in H2 atmosphere [176].
Fig. 19. (a) SEM image showing microstructural features of the as-built specimen. Inverse pole figures of the as-printed sample (b1), and the samples annealed for 2 h at 1173 K (b2), 1373 K (b3), and (b4) 1573 K. Twinning distribution of the as-printed sample (c1), and the samples annealed for 2 h at 1173 K (c2), 1373 K (c3), and (c4) 1573 K. TEM images of the deformed as-built (d1, d2) and samples annealed at 1573 K (d3, d4). Dislocation wall inside the dislocation network (d1), interactions between dislocations and the dislocation network (d2), and massive t wins (d3, d4) are indicated [178].
Fig. 20. TEM graphs showing distinct microstructures evolved along the depth direction after 5-impact of LSP. Near the upper surface (a), and at depths of 25 μm (b), 150 μm (c), and 250 μm (d). Schematic representations of the evolved microstructure along the depth direction (e) and transition in tensile to compression residual stress (f1-f3) [184].
Fig. 21. OM images of SLM-built CoCrFeNi with (a) chessboard (denoted as C) and (b) stripe (denoted as S) scanning strategies. EBSD IPF color maps parallel to the build direction in the outlined areas for C sample (c) and S sample (d). Lack-of-fusion cracks and spherical pores are encircled in (a) and (b), respectively. Enlarged EBSD band contrast images and IPF color maps showing intergranular cracks within C (e) and S (f) samples. Schematics of the chessboard (g) and stripe (h) scanning strategies for SLM process. (i) A schematic representation of hot cracking mechanism in AM process. (j) Hot tearing inclination as a function of grain size and typical depression pressures for some SLM-built alloys [187].
Fig. 22. Relative densities of SLM-printed CoCrFeMnNi and AlCoCrFeMnNi HEA systems as a function of VED. Solid and open symbols represent the density of CoCrFeMnNi and AlCoCrFeMnNi HEA, respectively. The VED ranges corresponding to balling effect, keyhole porosity, and sound printing are labeled. The transparent colors indicate transition regions.
Fig. 23. Microhardness of AM-built HEAs [[65], [66], [67], [68],73,84,87,[94], [95], [96], [97],[99], [100], [101],109,110,113,119,120,[122], [123], [124], [125],132,136,137,139,144,146,[148], [149], [150],166,[190], [191], [192]]. The data for conventional HEAs are taken from elsewhere [193]. Each column represents the corresponding HEA system with all its derivatives.
Fig. 24. Summary of ultimate tensile and yield strengths versus elongation for various HEAs fabricated by different AM techniques. The references are taken from Table 3. The UTS of conventional HEAs are adopted from [63]. AlCoCrFeNi2.1-DPHL (Dual-phase heterogeneous lamella), which indicates a high strength state of the art HEA prepared by arc melting followed by severe cold rolling is included for comparison [194].
| Composition | AM route | Phase structure | Powder type | Mechanical properties | Ref. | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| T.T (K) | σy (MPa) | UTS (MPa) | Strain (%) | |||||||
| CoCrNi | DLD | fcc | PA | RT | 490 | 790 | 57 | [ | ||
| CoCrFeNi | Ink-extrusion | Ink | RT | 250 | 598 | 33.8 | [ | |||
| 130 | 388 | 864 | 37 | |||||||
| CoCrFeMnNi | LAM | PA | RT | 352 | 540 | 26 | [ | |||
| 77 | 564 | 891 | 36 | |||||||
| CoCrFeMnNi | LMD | RT | 290 | 535 | 55 | [ | ||||
| 200 | 304 | 610 | 73 | |||||||
| 77 K | 402 | 878 | 95 | |||||||
| CoCrFeMnNi | LAAM | RT | 518 | 660 | 19.8 | [ | ||||
| 143 | 710 | 850 | 40.2 | |||||||
| CoCrFeMnNi | LAM | RT | 346 | 566 | 27 | [ | ||||
| CoCrFeMnNi | DLD | RT | 424 | 651.3 | 47.9 | [ | ||||
| CoCrFeNiNbx (x= 0.1) | DLD | fcc + Laves | PA + Nb | RT | ∼ 400 | ∼ 650 | ∼ 55 | [ | ||
| CoCrFeNiMo0.2 | LMD | fcc | PA | RT | ∼ 300 | 560 | 51 | [ | ||
| 77 | ∼ 500 | 928 | 60 | |||||||
| CoCrFeNi | SLM | fcc | RT | 600 | 745 | 32 | [ | |||
| CoCrFeMnNi | SLM | fcc | 519 | 601 | 34 | [ | ||||
| CoCrFeMnNi | SLM | fcc | 510 | ∼ 610 | 36 | [ | ||||
| CoCrFeNiC0.05 | SLM | fcc | 708 | 872 | ∼ 15 | [ | ||||
| CoCrFeNiC0.05 @ | 787 | 950 | ∼10.5 | |||||||
| CoCrFeNi-(1.8 at. %) N | SLM | fcc | 650 | 853 | 34 | [ | ||||
| CoCrFeMnNi-(1 at. %) C | SLM | fcc | 829 | 989 | 24.3 | [ | ||||
| Co1.5CrFeNi1.5Ti0.5Mo0.1 | SLM | fcc + TiCo2 + MoFe2 | 773.0 | 1178 | 25.8 | [ | ||||
| SLM + ST# | fcc fcc fcc | 897.5 | 1291 | 26.7 | ||||||
| SEBM | 743.4 | 932.2 | 40 | [ | ||||||
| SEBM + ST | 759.0 | 1139 | 35 | |||||||
| CoCrFeNi | SLM | fcc | 581.9 | 707.9 | 20 | [ | ||||
| AlxCoCrFeNi$ | x= 0.3 | DLD | fcc, | PM | 200 | ∼1300 | 100 | [ | ||
| x= 0.6 | fcc/ bcc | 400 | ∼1375 | 50 | ||||||
| x= 0.85 | bcc | 1400 | ∼2100 | 25 | ||||||
| AlCoCrFeNi2.1 | DLD | bcc + L12 | - | 678 | 1495 | 16 | [ | |||
| Al0.5CoCrFeNi | SLM | fcc + bcc | PM | 609 | 878 | 18 | [ | |||
| Al0.3CoCrFeNi | LENS | fcc + L1 2 | PA | 410 | ∼ 525 | 28 | [ | |||
| Al0.5CoCrFeNi | SLM | fcc | 579 | 721 | 22 | [ | ||||
| Al0.3CoCrFeNi | SLM | fcc | 730 | 896 | 29 | [ | ||||
| AlCrCuFeNi3 | SLM | fcc + bcc (B2) | ∼ 850 | 957 | 14.3 | [ | ||||
| AlCrFeNiV$ | SLM | fcc + L12 | 651 | 1057 | 30.3 | [ | ||||
| AlCoCrFeNi | SEBM | bcc + fcc | 769 | 1073.5 | 1.2 | [ | ||||
| CoCrFeMnNi | SEBM | fcc | 205 | 497 | 63 | [ | ||||
| Fe40 Mn20 Co20 Cr15 Si5 | SLM | ε (HCP) + γ (fcc) | ∼530 | 1100 | 30 | [ | ||||
| Fe49.5 Mn30 Co10 Cr10 C0.5 | SLM | fcc | 710 | 1000 | 28 | [ | ||||
| Ni6 Cr4 WFe9 Ti | SLM | fcc | 710 | 983 | 12.9 | [ | ||||
Table 3. Tensile properties of HEAs fabricated by different AM techniques.
| Composition | AM route | Phase structure | Powder type | Mechanical properties | Ref. | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| T.T (K) | σy (MPa) | UTS (MPa) | Strain (%) | |||||||
| CoCrNi | DLD | fcc | PA | RT | 490 | 790 | 57 | [ | ||
| CoCrFeNi | Ink-extrusion | Ink | RT | 250 | 598 | 33.8 | [ | |||
| 130 | 388 | 864 | 37 | |||||||
| CoCrFeMnNi | LAM | PA | RT | 352 | 540 | 26 | [ | |||
| 77 | 564 | 891 | 36 | |||||||
| CoCrFeMnNi | LMD | RT | 290 | 535 | 55 | [ | ||||
| 200 | 304 | 610 | 73 | |||||||
| 77 K | 402 | 878 | 95 | |||||||
| CoCrFeMnNi | LAAM | RT | 518 | 660 | 19.8 | [ | ||||
| 143 | 710 | 850 | 40.2 | |||||||
| CoCrFeMnNi | LAM | RT | 346 | 566 | 27 | [ | ||||
| CoCrFeMnNi | DLD | RT | 424 | 651.3 | 47.9 | [ | ||||
| CoCrFeNiNbx (x= 0.1) | DLD | fcc + Laves | PA + Nb | RT | ∼ 400 | ∼ 650 | ∼ 55 | [ | ||
| CoCrFeNiMo0.2 | LMD | fcc | PA | RT | ∼ 300 | 560 | 51 | [ | ||
| 77 | ∼ 500 | 928 | 60 | |||||||
| CoCrFeNi | SLM | fcc | RT | 600 | 745 | 32 | [ | |||
| CoCrFeMnNi | SLM | fcc | 519 | 601 | 34 | [ | ||||
| CoCrFeMnNi | SLM | fcc | 510 | ∼ 610 | 36 | [ | ||||
| CoCrFeNiC0.05 | SLM | fcc | 708 | 872 | ∼ 15 | [ | ||||
| CoCrFeNiC0.05 @ | 787 | 950 | ∼10.5 | |||||||
| CoCrFeNi-(1.8 at. %) N | SLM | fcc | 650 | 853 | 34 | [ | ||||
| CoCrFeMnNi-(1 at. %) C | SLM | fcc | 829 | 989 | 24.3 | [ | ||||
| Co1.5CrFeNi1.5Ti0.5Mo0.1 | SLM | fcc + TiCo2 + MoFe2 | 773.0 | 1178 | 25.8 | [ | ||||
| SLM + ST# | fcc fcc fcc | 897.5 | 1291 | 26.7 | ||||||
| SEBM | 743.4 | 932.2 | 40 | [ | ||||||
| SEBM + ST | 759.0 | 1139 | 35 | |||||||
| CoCrFeNi | SLM | fcc | 581.9 | 707.9 | 20 | [ | ||||
| AlxCoCrFeNi$ | x= 0.3 | DLD | fcc, | PM | 200 | ∼1300 | 100 | [ | ||
| x= 0.6 | fcc/ bcc | 400 | ∼1375 | 50 | ||||||
| x= 0.85 | bcc | 1400 | ∼2100 | 25 | ||||||
| AlCoCrFeNi2.1 | DLD | bcc + L12 | - | 678 | 1495 | 16 | [ | |||
| Al0.5CoCrFeNi | SLM | fcc + bcc | PM | 609 | 878 | 18 | [ | |||
| Al0.3CoCrFeNi | LENS | fcc + L1 2 | PA | 410 | ∼ 525 | 28 | [ | |||
| Al0.5CoCrFeNi | SLM | fcc | 579 | 721 | 22 | [ | ||||
| Al0.3CoCrFeNi | SLM | fcc | 730 | 896 | 29 | [ | ||||
| AlCrCuFeNi3 | SLM | fcc + bcc (B2) | ∼ 850 | 957 | 14.3 | [ | ||||
| AlCrFeNiV$ | SLM | fcc + L12 | 651 | 1057 | 30.3 | [ | ||||
| AlCoCrFeNi | SEBM | bcc + fcc | 769 | 1073.5 | 1.2 | [ | ||||
| CoCrFeMnNi | SEBM | fcc | 205 | 497 | 63 | [ | ||||
| Fe40 Mn20 Co20 Cr15 Si5 | SLM | ε (HCP) + γ (fcc) | ∼530 | 1100 | 30 | [ | ||||
| Fe49.5 Mn30 Co10 Cr10 C0.5 | SLM | fcc | 710 | 1000 | 28 | [ | ||||
| Ni6 Cr4 WFe9 Ti | SLM | fcc | 710 | 983 | 12.9 | [ | ||||
| [1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [2] | B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
| [3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI URL |
| [4] |
P. Barron, A. Carruthers, J. Fellowes, N. Jones, H. Dawson, E. Pickering, Scr. Mater. 176 (2020) 12-16.
DOI URL |
| [5] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128.
DOI URL |
| [6] |
S.S. Sohn, A.K. d. Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31 (2019), 1807142.
DOI URL |
| [7] |
B. Yin, F. Maresca, W. Curtin, Acta Mater. 188 (2020) 486-491.
DOI URL |
| [8] |
W. Huo, X. Liu, S. Tan, F. Fang, Z. Xie, J. Shang, J. Jiang, Appl. Surf. Sci. 439 (2018) 222-225.
DOI URL |
| [9] |
S. Xin, M. Zhang, T. Yang, Y. Zhao, B. Sun, T. Shen, J. Alloys. Compd. 769 (2018) 597-604.
DOI URL |
| [10] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
| [11] |
S. Sun, Y. Tian, H. Lin, X. Dong, Y. Wang, Z. Zhang, Z. Zhang, Mater. Des. 133 (2017) 122-127.
DOI URL |
| [12] |
X. Yang, D. Sun, Y. Zhou, Y. Gao, S. Xi, H. Wu, C. He, Mater. Lett. 263 (2020), 127202.
DOI URL |
| [13] |
R. Nair, H. Arora, S. Mukherjee, S. Singh, H. Singh, H. Grewal, Ultrason. Sonochem. 41 (2018) 252-260.
DOI URL PMID |
| [14] |
S. Shuang, Z. Ding, D. Chung, S. Shi, Y. Yang, Corros. Sci. 164 (2020), 108315.
DOI URL |
| [15] |
B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, J. Alloys. Compd. 624 (2015) 270-278.
DOI URL |
| [16] |
Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
| [17] |
Y. Lu, X. Gao, Y. Dong, T. Wang, H.-L. Chen, H. Maob, Y. Zhao, H. Jiang, Z. Cao, T. Li, Nanoscale 10 (2018) 1912-1919.
DOI URL |
| [18] |
G. Qin, R. Chen, P.K. Liaw, Y. Gao, L. Wang, Y. Su, H. Ding, J. Guo, X. Li, Nanoscale 12 (2020) 3965-3976.
DOI URL |
| [19] |
R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J. Hwang, H.J. Ryu, R. Banerjee, S.H. Hong, Mater. Chem. Phys. 210 (2018) 62-70.
DOI URL |
| [20] | S. Praveen, A. Anupam, T. Sirasani, B. Murty, R.S. Kottada, Trans. Indian I. Met. 66 (2013) 369-373. |
| [21] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107-123.
DOI URL |
| [22] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
| [23] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
| [24] |
H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, G. Laplanche, Addit. Manuf. 25 (2019) 252-262.
DOI |
| [25] |
B. Gwalani, V. Soni, O.A. Waseem, S.A. Mantri, R. Banerjee, Opt. Laser Technol. 113 (2019) 330-337.
DOI URL |
| [26] |
A. Amar, J. Li, S. Xiang, X. Liu, Y. Zhou, G. Le, X. Wang, F. Qu, S. Ma, W. Dong, Intermetallics 109 (2019) 162-166.
DOI URL |
| [27] |
J. Li, W. Craeghs, C. Jing, S. Gong, F. Shan, Mater. Des. 117 (2017) 363-370.
DOI URL |
| [28] |
X. Li, Adv. Eng. Mater. 20 (2018), 1700874.
DOI URL |
| [29] |
S. Chen, Y. Tong, P.K. Liaw, Entropy 20 (2018) 937.
DOI URL |
| [30] |
J. Kim, A. Wakai, A. Moridi, J. Mater. Res. 35 (2020) 1963-1983.
DOI URL |
| [31] |
J.M. Torralba, M. Campos, Metals 10 (2020) 639.
DOI URL |
| [32] |
T. Fujieda, H. Shiratori, K. Kuwabara, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, Mater. Lett. 159 (2015) 12-15.
DOI URL |
| [33] | K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba, Addit. Manuf. 23 (2018) 264-271. |
| [34] |
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656 (2016) 39-46.
DOI URL |
| [35] |
P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z. Dong, J. Wei, Mater. Des. 168 (2019), 107576.
DOI URL |
| [36] |
S. Singh, S. Ramakrishna, R. Singh, J. Manuf. Process. 25 (2017) 185-200.
DOI URL |
| [37] |
G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong, Appl. Surf. Sci. 445 (2018) 113-122.
DOI URL |
| [38] |
H. Zhang, Y. Zhao, S. Huang, S. Zhu, F. Wang, D. Li, Materials 12 (2019) 720.
DOI URL |
| [39] | P. Agrawal, S. Thapliyal, S. Nene, R. Mishra, B. McWilliams, K. Cho, Addit. Manuf. 32 (2020), 101098. |
| [40] |
C.C. Yang, J.L.H. Chau, C.J. Weng, C.S. Chen, Y.H. Chou, , Mater. Chem. Phys. 202 (2017) 151-158.
DOI URL |
| [41] |
T.W. Na, K.B. Park, S.Y. Lee, S.M. Yang, J.W. Kang, T.W. Lee, J.M. Park, K. Park, H.K. Park, J. Alloys. Compd. 817 (2020), 152757.
DOI URL |
| [42] |
J.M. Park, J.W. Kang, W.H. Lee, S.Y. Lee, S.H. Min, T.K. Ha, H.K. Park, Mater. Lett. 255 (2019), 126513.
DOI URL |
| [43] |
A.O. Moghaddam, A. Shokuhfar, A. Cabot, J. Alloys. Compd. 750 (2018) 1-7.
DOI URL |
| [44] |
A.O. Moghaddam, A. Shokuhfar, Y. Zhang, T. Zhang, D. Cadavid, J. Arbiol, A. Cabot, Adv. Mater. Interfaces 6 (2019), 1900467.
DOI URL |
| [45] |
B. Li, B. Qian, Y. Xu, Z. Liu, F. Xuan, Mater. Lett. 252 (2019) 88-91.
DOI URL |
| [46] |
M. Zhang, W. Zhang, F. Liu, Y. Peng, S. Hu, Y. Liu, Entropy 20 (2018) 924.
DOI URL |
| [47] | C.T. Schade, T.F. Murphy, C. Walton, Powder Metallurgy Word Congress, America, 2014. |
| [48] | J. Dawes, R. Bowerman, R. Trepleton, Johns. Matthey Technol. Rev. 59 (2015) 243-256. |
| [49] |
R.J. Hebert, J. Mater. Sci. 51 (2016) 1165-1175.
DOI URL |
| [50] |
F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet, S. Gorsse, JOM 71 (2019) 3443-3451.
DOI URL |
| [51] | K. Huang, X. Lin, Y. Wang, C. Xie, T. Yue, Mater. Res. Innovations 18 (Sup 2)(2014), S2-1008-1011. |
| [52] |
Y. Wang, R. Li, P. Niu, Z. Zhang, T. Yuan, J. Yuan, K. Li, Intermetallics 120 (2020), 106746.
DOI URL |
| [53] |
X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, H. Wu, Mater. Sci. Eng. A 767 (2019), 138382.
DOI URL |
| [54] |
J. Wang, H. Yang, J. Ruan, Y. Wang, S. Ji, J. Mater. Res. 34 (2019) 2126-2136.
DOI URL |
| [55] |
L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, J. Mater. Res. Technol. 1 (2012) 167-177.
DOI URL |
| [56] |
X. Jin, X. Gu, F. Quan, X. Ran, K. Zhang, A. Mao, Materialwiss. Werkstofftech. 50 (2019) 837-843.
DOI URL |
| [57] |
S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, J. Alloys. Compd. 771 (2019) 387-397.
DOI URL |
| [58] |
P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol. 43 (2020) 40-43.
DOI URL |
| [59] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [60] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 1-8.
DOI URL |
| [61] |
F. He, Z. Wang, Q. Wu, J. Li, J. Wang, C. Liu, Scr. Mater. 126 (2017) 15-19.
DOI URL |
| [62] |
J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, E. Beaugnon, Mater. Des. 95 (2016) 183-187.
DOI URL |
| [63] |
W. Guo, J. Su, W. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y. Xue, G. Dehm, Acta Mater. 185 (2020) 45-54.
DOI URL |
| [64] |
W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Adv. Mater. 30 (2018), 1804727.
DOI URL |
| [65] |
H. Zhang, Y. Pan, Y.Z. He, Mater. Des. 32 (2011) 1910-1915.
DOI URL |
| [66] | J. Yao, Z. Weng, G. Dong, L. Yang, International Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, 2013, pp.480-486. |
| [67] |
C. Zhang, G. Chen, P. Dai, Mater. Sci. Technol. 32 (2016) 1666-1672.
DOI URL |
| [68] |
F. Chang, B. Cai, C. Zhang, B. Huang, S. Li, P. Dai, Surf. Coat. Technol. 359 (2019) 132-140.
DOI URL |
| [69] | Z. Qiu, C. Yao, K. Feng, Z. Li, P.K. Chu, Int. J. Lightweight Mater. Manuf. 1 (2018) 33-39. |
| [70] |
S. Xiang, J. Li, H. Luan, A. Amar, S. Lu, K. Li, L. Zhang, X. Liu, G. Le, X. Wang, Mater. Sci. Eng. A 743 (2019) 412-417.
DOI URL |
| [71] |
S. Xiang, H. Luan, J. Wu, K.-F. Yao, J. Li, X. Liu, Y. Tian, W. Mao, H. Bai, G. Le, J. Alloys. Compd. 773 (2019) 387-392.
DOI URL |
| [72] |
Y. Chew, G. Bi, Z. Zhu, F. Ng, F. Weng, S. Liu, S. Nai, B. Lee, Mater. Sci. Eng. A 744 (2019) 137-144.
DOI URL |
| [73] |
Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, J. Gu, J. Alloys. Compd. 785 (2019) 1144-1159.
DOI URL |
| [74] |
S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K. Chan, Mater. Sci. Eng. A 761 (2019), 138056.
DOI URL |
| [75] | M.A. Melia, J.D. Carroll, S.R. Whetten, S.N. Esmaeely, J. Locke, E. White, I. Anderson, M. Chandross, J.R. Michael, N. Argibay, Addit. Manuf. 29 (2019), 100833. |
| [76] |
Q. Wang, A. Amar, C. Jiang, H. Luan, S. Zhao, H. Zhang, G. Le, X. Liu, X. Wang, X. Yang, Intermetallics 119 (2020), 106727.
DOI URL |
| [77] |
K. Zhou, J. Li, L. Wang, H. Yang, Z. Wang, J. Wang, Intermetallics 114 (2019), 106592.
DOI URL |
| [78] |
G.M. d. Bellefon, M. Gussev, A. Stoica, J.va. Duysen, K. Sridharan, Scr. Mater. 157 (2018) 162-166.
DOI URL |
| [79] |
P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.W. Tsai, J.W. Yeh, J. Alloys. Compd. 587 (2014) 544-552.
DOI URL |
| [80] |
S. Liu, Y. Wu, H. Wang, J. He, J. Liu, C. Chen, X. Liu, H. Wang, Z. Lu, Intermetallics 93 (2018) 269-273.
DOI URL |
| [81] |
W. Woo, J. Jeong, D.K. Kim, C. Lee, S.H. Choi, J.Y. Suh, S. Lee, S. Harjo, T. Kawasaki, Sci. Rep. 10 (2020) 1-15.
DOI URL |
| [82] |
H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, L. Vitos, Acta Mater. 149 (2018) 388-396.
DOI URL |
| [83] |
Y. Zhang, Y. Zhuang, A. Hu, J.J. Kai, C.T. Liu, Scr. Mater. 130 (2017) 96-99.
DOI URL |
| [84] | H. Zhang, Y.Z. He, Y. Pan, Y.S. He, K.S. Shin, Adv. Mater. Res.Trans. Tech. Publ. (2010) 1408-1411. |
| [85] |
H. Zhang, Y. Pan, Y. He, J. Therm. Spray Technol. 20 (2011) 1049-1055.
DOI URL |
| [86] |
H. Zhang, Y. Pan, Y. He, H. Jiao, Appl. Surf. Sci. 257 (2011) 2259-2263.
DOI URL |
| [87] | X. Ye, M. Ma, W. Liu, L. Li, M. Zhong, Y. Liu, Q. Wu, Adv. Mater. Sci. Eng. 2011 (2011) 1-7. |
| [88] |
S. Morville, M. Carin, P. Peyre, M. Gharbi, D. Carron, P.L. Masson, R. Fabbro, J. Laser Appl. 24 (2012), 032008.
DOI URL |
| [89] |
T. Yue, H. Xie, X. Lin, H. Yang, G. Meng, J. Alloys. Compd. 587 (2014) 588-593.
DOI URL |
| [90] |
S. Katakam, S.S. Joshi, S. Mridha, S. Mukherjee, N.B. Dahotre, J. Appl. Phys. 116 (2014), 104906.
DOI URL |
| [91] |
Y. Shon, S.S. Joshi, S. Katakam, R.S. Rajamure, N.B. Dahotre, Mater. Lett. 142 (2015) 122-125.
DOI URL |
| [92] |
V. Ocelík, N. Janssen, S. Smith, J.T.M. De Hosson, JOM 68 (2016) 1810-1818.
DOI URL |
| [93] |
Z. Cai, G. Jin, X. Cui, Z. Liu, W. Zheng, Y. Li, L. Wang, Mater. Charact. 120 (2016) 229-233.
DOI URL |
| [94] |
H. Liu, J. Liu, P. Chen, H. Yang, J. Hao, X. Tian, J. Mater. Eng. Perform. 28 (2019) 1544-1552.
DOI URL |
| [95] | N. Malatji, T. Lengopeng, S. Pityana, Mater. Today 28 (2020) 944-948. |
| [96] |
W. Wu, L. Jiang, H. Jiang, X. Pan, Z. Cao, D. Deng, T. Wang, T. Li, J. Therm. Spray Technol. 24 (2015) 1333-1340.
DOI URL |
| [97] |
H. Zhang, H. Tang, Y. He, J. Zhang, W. Li, S. Guo, JOM 69 (2017) 2078-2083.
DOI URL |
| [98] | Y. Li, Y. Shi, E. Olugbade, Mater. Res. Express 7 (2020), 026504. |
| [99] |
T. Yue, K. Huang, World J. Eng. 9 (2012) 119-124.
DOI URL |
| [100] | T. Yue, H. Zhang, Mater. Res. Innovations 18 (Sup2)(2014), S2-624- 628. |
| [101] |
I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K. Kurzydlowski, J. Alloys. Compd. 648 (2015) 751-758.
DOI URL |
| [102] |
S. Yang, Z. Liu, J. Pi, Mater. Lett. 261 (2020), 127004.
DOI URL |
| [103] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, Sci. Rep. 4 (2014) 6200.
DOI URL |
| [104] |
I. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Sci. Eng. A 675 (2016) 99-109.
DOI URL |
| [105] | T. Bhattacharjee, I. Wani, S. Sheikh, I. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Sci. Rep. 8 (2018) 1-8. |
| [106] |
R. Vikram, B. Murty, D. Fabijanic, S. Suwas, J. Alloys. Compd. 827 (2020), 154034.
DOI URL |
| [107] |
T. Borkar, V. Chaudhary, B. Gwalani, D. Choudhuri, C.V. Mikler, V. Soni, T. Alam, R.V. Ramanujan, R. Banerjee, Adv. Eng. Mater. 19 (2017), 1700048.
DOI URL |
| [108] |
T. Borkar, B. Gwalani, D. Choudhuri, C. Mikler, C. Yannetta, X. Chen, R.V. Ramanujan, M. Styles, M. Gibson, R. Banerjee, Acta Mater. 116 (2016) 63-76.
DOI URL |
| [109] |
H.R. Sistla, J.W. Newkirk, F.F. Liou, Mater. Des. 81 (2015) 113-121.
DOI URL |
| [110] | B. Gwalani, S. Gangireddy, S. Shukla, C.J. Yannetta, S.G. Valentin, R.S. Mishra, R. Banerjee, Mater. Today Commun. 20 (2019), 100602. |
| [111] |
J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Mater. Sci. Eng. A 633 (2015) 184-193.
DOI URL |
| [112] |
Q. Chao, T. Guo, T. Jarvis, X. Wu, P. Hodgson, D. Fabijanic, Surf. Coat. Technol. 332 (2017) 440-451.
DOI URL |
| [113] |
A. Mohanty, J. Sampreeth, O. Bembalge, J. Hascoet, S. Marya, R. Immanuel, S. Panigrahi, Surf. Coat. Technol. 380 (2019), 125028.
DOI URL |
| [114] |
O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
| [115] |
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017), 1701678.
DOI URL |
| [116] |
S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Vesel´y, J. Z´yka, U. Klement, S. Guo, J. Appl. Phys. 120 (2016), 164902.
DOI URL |
| [117] |
W. Guo, B. Liu, Y. Liu, T. Li, A. Fu, Q. Fang, Y. Nie, J. Alloys. Compd. 776 (2019) 428-436.
DOI URL |
| [118] | H. Dobbelstein, M. Thiele, E.L. Gurevich, E.P. George, A. Ostendorf, Phys. Proc. 83 (2016) 624-633. |
| [119] |
M. Zhang, X. Zhou, X. Yu, J. Li, Surf. Coat. Technol. 311 (2017) 321-329.
DOI URL |
| [120] |
N. Ley, S.S. Joshi, B. Zhang, Y.H. Ho, N.B. Dahotre, M.L. Young, Surf. Coat. Technol. 348 (2018) 150-158.
DOI URL |
| [121] |
L. Chen, X. Zhang, Y. Wang, X. Hao, H. Liu, Mater. Res. Express 6 (2019), 116571.
DOI URL |
| [122] |
H. Wang, Q. Liu, Y. Guo, H. Lan, Intermetallics 115 (2019), 106613.
DOI URL |
| [123] | H. Dobbelstein, E.L. Gurevich, E.P. George, A. Ostendorf, G. Laplanche, Addit. Manuf. 24 (2018) 386-390. |
| [124] |
Q. Li, H. Zhang, D. Li, Z. Chen, S. Huang, Z. Lu, H. Yan, Materials 12 (2019) 533.
DOI URL |
| [125] | M.A. Melia, S.R. Whetten, R. Puckett, M. Jones, M.J. Heiden, N. Argibay, A.B. Kustas, Appl. Mater. Today 19 (2020), 100560. |
| [126] |
M. Moorehead, K. Bertsch, M. Niezgoda, C. Parkin, M. Elbakhshwan, K. Sridharan, C. Zhang, D. Thoma, A. Couet, Mater. Des. 187 (2020), 108358.
DOI URL |
| [127] |
C. Huang, Y. Zhang, J. Shen, R. Vilar, Surf. Coat. Technol. 206 (2011) 1389-1395.
DOI URL |
| [128] |
C. Huang, Y. Zhang, R. Vilar, J. Shen, Mater. Des. 41 (2012) 338-343.
DOI URL |
| [129] |
L. Jiang, W. Wu, Z. Cao, D. Deng, T. Li, J. Therm. Spray Technol. 25 (2016) 806-814.
DOI URL |
| [130] |
F. Shu, S. Liu, H. Zhao, W. He, S. Sui, J. Zhang, P. He, B. Xu, J. Alloys. Compd. 731 (2018) 662-666.
DOI URL |
| [131] |
F. Shu, L. Wu, H. Zhao, S. Sui, L. Zhou, J. Zhang, W. He, P. He, B. Xu, Mater. Lett. 211 (2018) 235-238.
DOI URL |
| [132] |
H. Zhang, Y.Z. He, Y. Pan, S. Guo, J. Alloys. Compd. 600 (2014) 210-214.
DOI URL |
| [133] |
M.S.K.K.Y. Nartu T. Alam, S. Dasari, S.A. Mantri, Materialia 9 (2020), 100522.
DOI URL |
| [134] |
J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Scr. Mater. 129 (2017) 30-34.
DOI URL |
| [135] |
M. Li, K.M. Flores, J. Alloys. Compd. 825 (2020), 154025.
DOI URL |
| [136] | Q. Li, H. Zhang, D. Li, Z. Chen, F. Wang, M. Wu, Int. J. Refract. Hard Met. 92 (2020), 105195. |
| [137] |
Y. Brif, M. Thomas, I. Todd, Scr. Mater. 99 (2015) 93-96.
DOI URL |
| [138] |
R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou, J. Alloys. Compd. 746 (2018) 125-134.
DOI URL |
| [139] |
Y. Kuzminova, D. Firsov, A. Dudin, S. Sergeev, A. Zhilyaev, A. Dyakov, A. Chupeeva, A. Alekseev, D. Martynov, I. Akhatov, Intermetallics 116 (2020), 106651.
DOI URL |
| [140] | T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, Addit. Manuf. 25 (2019) 412-420. |
| [141] |
Z. Zhu, Q. Nguyen, F. Ng, X. An, X. Liao, P. Liaw, S. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
| [142] |
Y.K. Kim, J. Choe, K.A. Lee, J. Alloys. Compd. 805 (2019) 680-691.
DOI URL |
| [143] |
P. Niu, R. Li, S. Zhu, M. Wang, C. Chen, T. Yuan, Opt. Laser Technol. 127 (2020), 106147.
DOI URL |
| [144] | Z. Xu, H. Zhang, W. Li, A. Mao, L. Wang, G. Song, Y. He, Addit. Manuf. 28 (2019) 766-771. |
| [145] |
J. Ren, C. Mahajan, L. Liu, D. Follette, W. Chen, S. Mukherjee, Metals 9 (2019) 1029.
DOI URL |
| [146] |
P. Niu, R. Li, T. Yuan, S. Zhu, C. Chen, M. Wang, L. Huang, Intermetallics 104 (2019) 24-32.
DOI URL |
| [147] |
D. Karlsson, A. Marshal, F. Johansson, M. Schuisky, M. Sahlberg, J.M. Schneider, U. Jansson, J. Alloys. Compd. 784 (2019) 195-203.
DOI URL |
| [148] |
P. Zhou, D. Xiao, Z. Wu, X. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
| [149] |
K. Sun, W. Peng, L. Yang, L. Fang, Metals 10 (2020) 292.
DOI URL |
| [150] |
M. Zhang, X. Zhou, D. Wang, W. Zhu, J. Li, Y.F. Zhao, Mater. Sci. Eng. A 743 (2019) 773-784.
DOI URL |
| [151] | S. Luo, C. Zhao, Y. Su, Q. Liu, Z. Wang, Addit. Manuf. 31 (2020), 100925. |
| [152] |
H. Yao, Z. Tan, D. He, Z. Zhou, Z. Zhou, Y. Xue, L. Cui, L. Chen, G. Wang, Y. Yang, J. Alloys. Compd. 813 (2020), 152196.
DOI URL |
| [153] | S. Sarkar, P.K. Sarswat, M.L. Free, Addit. Manuf. 30 (2019), 100902. |
| [154] |
P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Appl. Surf. Sci. 476 (2019) 242-258.
DOI URL |
| [155] |
H. Zhang, W. Xu, Y. Xu, Z. Lu, D. Li, Int. J. Adv. Manuf. Tech. 96 (2018) 461-474.
DOI URL |
| [156] |
X. Yang, Y. Zhou, S. Xi, Z. Chen, P. Wei, C. He, T. Li, Y. Gao, H. Wu, Mater. Sci. Eng. A 767 (2019), 138394.
DOI URL |
| [157] |
S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Materials 12 (2019) 1706.
DOI URL |
| [158] |
T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Y. Koizumi, A. Chiba, S. Watanabe, Mater. Lett. 189 (2017) 148-151.
DOI URL |
| [159] |
V.V. Popov, A. Katz-Demyanetz, A. Koptyug, M. Bamberger, Heliyon 5 (2019), e01188.
DOI URL |
| [160] |
Z. Zhu, X. An, W. Lu, Z. Li, F. Ng, X. Liao, U. Ramamurty, S. Nai, J. Wei, Mater. Res. Lett. 7 (11) (2019) 453-459.
DOI URL |
| [161] | Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 1-7. |
| [162] |
J.G. Kim, J.M. Park, J.B. Seol, J. Choe, J.-H. Yu, S. Yang, H.S. Kim, Mater. Sci. Eng. A 773 (2020), 138726.
DOI URL |
| [163] |
J.M. Park, J. Choe, J.G. Kim, J.W. Bae, J. Moon, S. Yang, K.T. Kim, J.H. Yu, H.S. Kim, Mater. Res. Lett. 8 (2020) 1-7.
DOI URL |
| [164] |
R. Zhou, Y. Liu, C. Zhou, S. Li, W. Wu, M. Song, B. Liu, X. Liang, P. Liaw, Intermetallics 94 (2018) 165-171.
DOI URL |
| [165] |
W. Wu, R. Zhou, B. Wei, S. Ni, Y. Liu, M. Song, Mater. Charact. 144 (2018) 605-610.
DOI URL |
| [166] |
R. Zhou, Y. Liu, B. Liu, J. Li, Q. Fang, Intermetallics 106 (2019) 20-25.
DOI URL |
| [167] | M. Song, R. Zhou, J. Gu, Z. Wang, S. Ni, Y. Liu, Appl. Mater. Today 18 (2020), 100498. |
| [168] |
P. Jiang, C. Zhang, C. Wu, S. Zhang, J. Zhang, A.O. Abdullah, J. Mater. Eng. Perform. 29 (2020) 1346-1355.
DOI URL |
| [169] |
J. Li, S. Xiang, H. Luan, A. Amar, X. Liu, S. Lu, Y. Zeng, G. Le, X. Wang, F. Qu, J. Mater. Sci. Technol. 35 (2019) 2430-2434.
DOI URL |
| [170] |
B. Li, L. Zhang, Y. Xu, Z. Liu, B. Qian, F. Xuan, Powder Technol. 360 (2020) 509-521.
DOI URL |
| [171] |
S. Chen, X. Chen, L. Wang, J. Liang, C. Liu, J. Laser Appl. 29 (2017), 012004.
DOI URL |
| [172] |
N. Li, S. Wu, D. Ouyang, J. Zhang, L. Liu, J. Alloys. Compd. 822 (2020), 153695.
DOI URL |
| [173] |
H. Zhang, W. Wu, Y. He, M. Li, S. Guo, Appl. Surf. Sci. 363 (2016) 543-547.
DOI URL |
| [174] |
Y. He, J. Zhang, H. Zhang, G. Song, Coatings 7 (2017) 7.
DOI URL |
| [175] |
A.E. Jakus, S.L. Taylor, N.R. Geisendorfer, D.C. Dunand, R. N. Shah, Adv. Funct. Mater. 25 (2015) 6985-6995.
DOI URL |
| [176] |
C. Kenel, N.P. Casati, D.C. Dunand, Nat. Commun. 10 (2019) 1-8.
DOI URL |
| [177] | J.U. Surjadi, L. Gao, K. Cao, R. Fan, Y. Lu, Sci. Rep. 8 (2018) 1-10. |
| [178] | D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Addit. Manuf. 32 (2020), 101058. |
| [179] |
J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T. Nieh, K. An, Z. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
| [180] |
F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C. Liu, J.J. Kai, Acta Mater. 167 (2019) 275-286.
DOI URL |
| [181] |
F. He, Z. Wang, J. Wang, Q. Wu, D. Chen, B. Han, J. Li, J. Wang, J. Kai, Scr. Mater. 146 (2018) 281-285.
DOI URL |
| [182] | K. Zhou, Z. Wang, F. He, S. Liu, J. Li, J.J. Kai, J. Wang, Addit. Manuf. 32 (2020), 101410. |
| [183] |
J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, D.M. Fabijanic, Mater. Sci. Eng. A 733 (2018) 59-70.
DOI URL |
| [184] | Z. Tong, H. Liu, J. Jiao, W. Zhou, Y. Yang, X. Ren, Addit. Manuf. 32 (2020), 101417. |
| [185] |
L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, R. Arróyave, Acta Mater. 176 (2019) 199-210.
DOI URL |
| [186] |
Y. Zhou, Z. Zhang, Y. Wang, G. Liu, S. Zhou, Y. Li, J. Shen, M. Yan, Addit. Manuf. 25 (2019) 204-217.
DOI |
| [187] |
Z. Sun, X. Tan, M. Descoins, D. Mangelinck, S. Tor, C. Lim, Scr. Mater. 168 (2019) 129-133.
DOI URL |
| [188] |
D. Gu, Y. Shen, Mater. Des. 30 (2009) 2903-2910.
DOI URL |
| [189] |
D. Hann, J. Iammi, J. Folkes, J. Phys. D Appl. Phys. 44 (2011), 445401.
DOI URL |
| [190] |
J. Guo, M. Goh, Z. Zhu, X. Lee, M.L.S. Nai, J. Wei, Mater. Des. 153 (2018) 211-220.
DOI URL |
| [191] |
M.S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, Nat. Commun. 11 (2020) 1-12.
DOI URL |
| [192] |
A. Piglione, B. Dovgyy, C. Liu, C. Gourlay, P. Hooper, M. Pham, Mater. Lett. 224 (2018) 22-25.
DOI URL |
| [193] | H. Diao, X. Xie, F. Sun, K.A. Dahmen, P.K. Liaw, in: M. Gao, J. Yeh, P. Liaw, Y. Zhang (Eds.), High-Entropy Alloys, Springer, 2016, pp.181-236. |
| [194] |
P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 1-8.
DOI URL |
| [195] |
A.Ostovar. Moghaddam, E.A. Trofimov, J. Alloys Compd. 851 (2021) 156838.
DOI URL |
| [1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
| [2] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
| [3] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
| [4] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
| [5] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [6] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
| [7] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
| [8] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [9] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
| [10] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
| [11] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
| [12] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
| [13] | Yuting Wu, Chong Li, Xingchuan Xia, Hongyan Liang, Qiqi Qi, Yongchang Liu. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'-strengthened superalloys [J]. J. Mater. Sci. Technol., 2021, 67(0): 95-104. |
| [14] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
| [15] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
