J. Mater. Sci. Technol. ›› 2021, Vol. 68: 76-90.DOI: 10.1016/j.jmst.2020.06.052
• Research Article • Previous Articles Next Articles
Jixing Lina,*,1(), Xian Tonga,b,**,1(
), Kun Wanga, Zimu Shic, Yuncang Lid, Matthew Dargusche, Cuie Wend,***(
)
Received:
2020-05-05
Revised:
2020-06-13
Accepted:
2020-06-25
Published:
2021-03-30
Online:
2021-05-01
Contact:
Jixing Lin,Xian Tong,Cuie Wen
About author:
***cuie.wen@rmit.edu.au (C. Wen).1These authors contributed equally to this work.
Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications[J]. J. Mater. Sci. Technol., 2021, 68: 76-90.
Samples | Cu | Ti | Impurities | Zn |
---|---|---|---|---|
Zn-3Cu | 3.08 ± 0.21 | - | 0.055 ± 0.012 | Bal. |
Zn-3Cu-0.2Ti | 3.13 ± 0.17 | 0.225 ± 0.062 | 0.063 ± 0.015 | Bal. |
Table 1 Chemical compositions of Zn-3Cu and Zn-3Cu-0.2Ti alloys (wt.%).
Samples | Cu | Ti | Impurities | Zn |
---|---|---|---|---|
Zn-3Cu | 3.08 ± 0.21 | - | 0.055 ± 0.012 | Bal. |
Zn-3Cu-0.2Ti | 3.13 ± 0.17 | 0.225 ± 0.062 | 0.063 ± 0.015 | Bal. |
Fig. 2. Microstructures of AC, HR, and HR + CR samples: (a) AC Zn-3Cu; (b) AC Zn-3Cu-0.2Ti; (c) HR Zn-3Cu; (d) HR Zn-3Cu; (e) HR + CR Zn-3Cu; (f) HR + CR Zn-3Cu-0.2Ti.
Fig. 3. SEM image and EDS analysis results of HR Zn-3Cu-0.2Ti sample: (a) SEM image; (b) EDS mapping image of Zn; (c) EDS mapping image of Cu; (d) EDS mapping image of Ti; (e) relative atomic contents of different micro spots analyzed by EDS.
Fig. 4. Tensile properties of AC, HR, and HR + CR samples of Zn-3Cu and Zn-3Cu-0.2Ti: (a) tensile stress-strain curves; (b) yield strength, ultimate tensile strength, elongation, and hardness.
Fig. 5. Tensile fracture surfaces: (a) AC Zn-3Cu; (b) HR Zn-3Cu; (c) HR + CR Zn-3Cu; (d) AC Zn-3Cu-0.2Ti; (e) HR Zn-3Cu-0.2Ti; (f) HR + CR Zn-3Cu-0.2Ti.
Fig. 6. Corrosion and degradation behaviors of AC, HR, and HR + CR samples of Zn-3Cu and Zn-3Cu-0.2Ti in Hanks’ solution: (a) potentiodynamic polarization curves; (b) degradation rates after 3 months’ immersion.
Samples | Corrosion potential, Ecorr (V vs. SCE) | Corrosion current density, Icorr (μA/cm2) | Corrosion rate, Vcorr (μm/a) |
---|---|---|---|
AC Zn-3Cu | -0.932 ± 0.157 | 14.3 ± 0.6 | 190 ± 8 |
HR Zn-3Cu | -0.946 ± 0.119 | 19.2 ± 0.4 | 255 ± 5 |
HR + CR Zn-3Cu | -0.979 ± 0.185 | 23.4 ± 0.7 | 311 ± 9 |
AC Zn-3Cu-0.2Ti | -0.961 ± 0.204 | 10.9 ± 0.4 | 145 ± 5 |
HR Zn-3Cu-0.2Ti | -0.982 ± 0.189 | 19.0 ± 0.5 | 252 ± 7 |
HR + CR Zn-3Cu-0.2Ti | -0.993 ± 0.172 | 22.5 ± 0.8 | 299 ± 11 |
Table 2 Electrochemical performance parameters of AC, HR, and HR + CR samples of Zn-3Cu and Zn-3Cu-0.2Ti in Hanks’ solution.
Samples | Corrosion potential, Ecorr (V vs. SCE) | Corrosion current density, Icorr (μA/cm2) | Corrosion rate, Vcorr (μm/a) |
---|---|---|---|
AC Zn-3Cu | -0.932 ± 0.157 | 14.3 ± 0.6 | 190 ± 8 |
HR Zn-3Cu | -0.946 ± 0.119 | 19.2 ± 0.4 | 255 ± 5 |
HR + CR Zn-3Cu | -0.979 ± 0.185 | 23.4 ± 0.7 | 311 ± 9 |
AC Zn-3Cu-0.2Ti | -0.961 ± 0.204 | 10.9 ± 0.4 | 145 ± 5 |
HR Zn-3Cu-0.2Ti | -0.982 ± 0.189 | 19.0 ± 0.5 | 252 ± 7 |
HR + CR Zn-3Cu-0.2Ti | -0.993 ± 0.172 | 22.5 ± 0.8 | 299 ± 11 |
Fig. 7. Friction and wear behaviors of Zn-3Cu and Zn-3Cu-0.2Ti samples in Hanks’ solution: (a) friction coefficient curves; (b) friction coefficient and wear loss.
Fig. 11. Antibacterial effects of HR + CR Zn-3Cu and Zn-3Cu-0.2Ti samples after co-culturing with S. aureus for 24 h: (a) image of Zn-3Cu; (b) image of Zn-3Cu-0.2Ti; and (c) inhibition zone diameter (IZD) of Zn-3Cu and Zn-3Cu-0.2Ti alloys.
Composition | Fabrication method | Yield strength, σys (MPa) | Ultimate tensile strength, σuts (MPa) | Elongation, ε (%) | Hardness (HV) | Corrosion rate (μm/a) | Ref. | |
---|---|---|---|---|---|---|---|---|
Electro- chemical | immersion | |||||||
- | 33 ± 1 (c-SBF, 20d) | [ | ||||||
Zn-2Cu | AE | 200 ± 4 | 240 ± 1 | 46.8 ± 1.4 | - | - | 27 ± 5 (c-SBF, 20d) | [ |
Zn-3Cu | AE | 214 ± 1 | 257 ± 1 | 47.2 ± 1.0 | - | 5 (Hanks’) | 30 ± 4 (c-SBF, 20d) | [ |
Zn-4Cu | AE | 227 ± 5 | 271 ± 1 | 50.6 ± 2.8 | - | - | 25 ± 5 (c-SBF, 20d) | [ |
Zn-3Cu-0.1Mg | AE | 345 ± 22 | 366 ± 17 | 5.3 ± 1.3 | - | 18 (Hanks’) | 23 ± 2 (Hanks’, 20d) | [ |
Zn-3Cu-0.5Mg | AE | 404 ± 10 | 416 ± 6 | 2.1 ± 0.9 | - | 24 (Hanks’) | 30 ± 3 (Hanks’, 20d) | [ |
Zn-3Cu-1Mg | AE | 427 ± 7 | 440 ± 10 | 0.9 ± 0.4 | - | 180 (Hanks’) | 43 ± 4 (Hanks’, 20d) | [ |
Zn-3Cu-0.5Fe | AE | 232 ± 3 | 284 ± 2 | 32.7 ± 4.2 | 76.1 ± 1.3 | 104 (SBF) | 64 ± 4 (SBF, 20d) | [ |
Zn-3Cu-1Fe | AE | 222 ± 6 | 272 ± 8 | 19.6 ± 1.4 | 82.2 ± 1.0 | 130 (SBF) | 69 ± 7 (SBF, 20d) | [ |
Zn-1Cu-0.1Ti | CR + CD | 177 | 200 | 21 | - | - | 20 (HBSS, 30d) | [ |
Zn-1Cu-0.2Mn - 0.1Ti | CR + CD | 196 | 212 | 19 | - | - | 20 (HBSS, 30d) | [ |
Zn-2Cu | AC | 96 ± 3 | 128 ± 7 | 2.1 ± 0.2 | - | - | 11 ± 4 (Hanks’, 30d) | [ |
Zn-2Cu-0.05Ti | AC | 132 ± 6 | 177 ± 8 | 2.5 ± 0.2 | - | - | 22 ± 7 (Hanks’, 30d) | [ |
Zn-2Cu-0.1Ti | AC | 113 ± 3 | 146 ± 7 | 1.8 ± 0.2 | - | - | 28 ± 9 (Hanks’, 30d) | [ |
Zn-1Cu-0.1Ti | AC HR HR + CR | 86 ± 3 175 ± 4 204 ± 4 | 92 ± 4 206 ± 6 250 ± 4 | 1.4 ± 0.8 39.2 ± 1.4 75.2 ± 1.9 | 72.6 ± 0.6 70.6 ± 1.8 56.4 ± 0.8 | 315 ± 6 1628 ± 13 991 ± 7 (Hanks’) | 29 ± 22 34 ± 18 32 ± 11 (Hanks’, 30d) | [ |
Zn-3Cu | AC HR HR + CR | 95 ± 2 189 ± 4 193 ± 3 | 98 ± 3 244 ± 4 268 ± 3 | 1.2 ± 0.3 38.4 ± 0.8 66.4 ± 0.9 | 79.8 ± 2.0 79.0 ± 1.3 62.0 ± 1.4 | 190 ± 8 255 ± 5 311 ± 9 (Hanks’) | 19 ± 2 21 ± 3 24 ± 2 (Hanks’, 90d) | this study |
Zn-3Cu-0.2Ti | AC HR HR + CR | 117 ± 3 224 ± 3 211 ± 3 | 124 ± 3 290 ± 4 271 ± 5 | 1.2 ± 0.3 42.7 ± 1.1 72.1 ± 1.6 | 83.8 ± 1.8 80.6 ± 1.5 63.6 ± 1.0 | 145 ± 5 252 ± 7 299 ± 11 (Hanks’) | 18 ± 3 21 ± 2 22 ± 2 (Hanks’, 90d) | this study |
Table 3 Mechanical properties and corrosion properties of Zn-Cu-based bioabsorbable metals.
Composition | Fabrication method | Yield strength, σys (MPa) | Ultimate tensile strength, σuts (MPa) | Elongation, ε (%) | Hardness (HV) | Corrosion rate (μm/a) | Ref. | |
---|---|---|---|---|---|---|---|---|
Electro- chemical | immersion | |||||||
- | 33 ± 1 (c-SBF, 20d) | [ | ||||||
Zn-2Cu | AE | 200 ± 4 | 240 ± 1 | 46.8 ± 1.4 | - | - | 27 ± 5 (c-SBF, 20d) | [ |
Zn-3Cu | AE | 214 ± 1 | 257 ± 1 | 47.2 ± 1.0 | - | 5 (Hanks’) | 30 ± 4 (c-SBF, 20d) | [ |
Zn-4Cu | AE | 227 ± 5 | 271 ± 1 | 50.6 ± 2.8 | - | - | 25 ± 5 (c-SBF, 20d) | [ |
Zn-3Cu-0.1Mg | AE | 345 ± 22 | 366 ± 17 | 5.3 ± 1.3 | - | 18 (Hanks’) | 23 ± 2 (Hanks’, 20d) | [ |
Zn-3Cu-0.5Mg | AE | 404 ± 10 | 416 ± 6 | 2.1 ± 0.9 | - | 24 (Hanks’) | 30 ± 3 (Hanks’, 20d) | [ |
Zn-3Cu-1Mg | AE | 427 ± 7 | 440 ± 10 | 0.9 ± 0.4 | - | 180 (Hanks’) | 43 ± 4 (Hanks’, 20d) | [ |
Zn-3Cu-0.5Fe | AE | 232 ± 3 | 284 ± 2 | 32.7 ± 4.2 | 76.1 ± 1.3 | 104 (SBF) | 64 ± 4 (SBF, 20d) | [ |
Zn-3Cu-1Fe | AE | 222 ± 6 | 272 ± 8 | 19.6 ± 1.4 | 82.2 ± 1.0 | 130 (SBF) | 69 ± 7 (SBF, 20d) | [ |
Zn-1Cu-0.1Ti | CR + CD | 177 | 200 | 21 | - | - | 20 (HBSS, 30d) | [ |
Zn-1Cu-0.2Mn - 0.1Ti | CR + CD | 196 | 212 | 19 | - | - | 20 (HBSS, 30d) | [ |
Zn-2Cu | AC | 96 ± 3 | 128 ± 7 | 2.1 ± 0.2 | - | - | 11 ± 4 (Hanks’, 30d) | [ |
Zn-2Cu-0.05Ti | AC | 132 ± 6 | 177 ± 8 | 2.5 ± 0.2 | - | - | 22 ± 7 (Hanks’, 30d) | [ |
Zn-2Cu-0.1Ti | AC | 113 ± 3 | 146 ± 7 | 1.8 ± 0.2 | - | - | 28 ± 9 (Hanks’, 30d) | [ |
Zn-1Cu-0.1Ti | AC HR HR + CR | 86 ± 3 175 ± 4 204 ± 4 | 92 ± 4 206 ± 6 250 ± 4 | 1.4 ± 0.8 39.2 ± 1.4 75.2 ± 1.9 | 72.6 ± 0.6 70.6 ± 1.8 56.4 ± 0.8 | 315 ± 6 1628 ± 13 991 ± 7 (Hanks’) | 29 ± 22 34 ± 18 32 ± 11 (Hanks’, 30d) | [ |
Zn-3Cu | AC HR HR + CR | 95 ± 2 189 ± 4 193 ± 3 | 98 ± 3 244 ± 4 268 ± 3 | 1.2 ± 0.3 38.4 ± 0.8 66.4 ± 0.9 | 79.8 ± 2.0 79.0 ± 1.3 62.0 ± 1.4 | 190 ± 8 255 ± 5 311 ± 9 (Hanks’) | 19 ± 2 21 ± 3 24 ± 2 (Hanks’, 90d) | this study |
Zn-3Cu-0.2Ti | AC HR HR + CR | 117 ± 3 224 ± 3 211 ± 3 | 124 ± 3 290 ± 4 271 ± 5 | 1.2 ± 0.3 42.7 ± 1.1 72.1 ± 1.6 | 83.8 ± 1.8 80.6 ± 1.5 63.6 ± 1.0 | 145 ± 5 252 ± 7 299 ± 11 (Hanks’) | 18 ± 3 21 ± 2 22 ± 2 (Hanks’, 90d) | this study |
[1] |
Q. Chen, G.A. Thouas, Mater. Sci. Eng. R, 87 (2015), pp. 1-57.
DOI URL |
[2] |
J. Disegi, L. Eschbach, Injury, 31 (2000), pp. D2-D6.
DOI URL |
[3] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater., 8 (2012), pp. 3888-3903.
DOI PMID |
[4] |
M. Moravej, D. Mantovani, Int. J. Mol. Sci., 12 (2011), pp. 4250-4270.
DOI PMID |
[5] |
G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials, 28 (2007), pp. 1689-1710.
DOI URL |
[6] |
P. Erne, M. Schier, T.J. Resink, Cardiovasc. Int. Rad., 29 (2006), pp. 11-16.
DOI URL |
[7] |
H. Gong, K. Wang, R. Strich, J.G. Zhou, J. Biomed. Mater. Res. Part B, 103 (2015), pp. 1632-1640.
DOI URL |
[8] |
M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Mater. Sci. Eng. C, 71 (2017), pp. 1253-1266.
DOI URL |
[9] |
F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmanne, H. Windhagen, Biomaterials, 27 (2006), pp. 1013-1018.
DOI URL |
[10] |
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen, Biomaterials, 26 (2005), pp. 3557-3563.
PMID |
[11] |
X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, L.J. Chen, Acta Biomater., 6 (2010), pp. 4605-4613.
DOI PMID |
[12] |
O.V. Karavai, A.C. Bastos, M.L. Zheludkevich, M.G. Taryba, S.V. Lamaka, M.G.S. Ferreira, Electrochim. Acta, 55 (2010), pp. 5401-5406.
DOI URL |
[13] |
M. Schinhammer, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, Acta Biomater., 6 (2010), pp. 1705-1713.
DOI PMID |
[14] |
H. Hermawan, D. Mantovani, Acta Biomater., 9 (2013), pp. 8585-8592.
DOI PMID |
[15] | P. Vanýsek, Electrochemical Series CRC Press LLC. (2008) . |
[16] |
P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater., 25 (2013), pp. 2577-2582.
DOI URL |
[17] |
A. Cordova, M. Alvarez-Mon, Neurosci. Biobehav. Rev., 19 (1995), pp. 439-445.
DOI URL |
[18] |
J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, T. Ruml, Mater. Sci. Eng. C, 58 (2016), pp. 24-35.
DOI URL |
[19] |
C.J. Frederickson, J.Y. Koh, A.I. Bush, Nat. Rev. Neurosci., 6 (2005), pp. 449-462.
PMID |
[20] |
J.D. Deshpande, M.M. Joshi, P.A. Giri, Int. J. Med. Sci. Public Health, 2 (2013), pp. 1-6.
DOI URL |
[21] |
K.A. McCall, C.C. Huang, C.A. Fierke, J. Nutr., 130 (2000), pp. 1437S-1446S.
DOI URL |
[22] |
B. Hennig, Y. Wang, S. Ramasamy, J. Nutr., 122 (1992), pp. 1242-1247.
PMID |
[23] |
X. Tong, D.C. Zhang, X.T. Zhang, Y.C. Su, Z.M. Shi, K. Wang, J.G. Lin, Y.C. Li, J.X. Lin, C.E. Wen, Acta Biomater., 82 (2018), pp. 197-204.
DOI URL |
[24] |
J.C.T. Farge, W.M. Williams, Can. Metall. Q., 5 (4) (1966), pp. 265-272.
DOI URL |
[25] |
H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep., 5 (2015), p. 10719.
DOI URL |
[26] |
J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, T. Ruml, Mater. Sci. Eng. C, 58 (2016), pp. 24-35.
DOI URL |
[27] |
S. Sun, Y. Ren, L. Wang, B. Yang, H. Li, G. Qin, Mater. Sci. Eng. A, 701 (2017), pp. 129-133.
DOI URL |
[28] |
P.S. Bagha, S. Khaleghpanah, S. Sheibani, M. Khakbiz, A. Zakeri, J. Alloys Compd., 735 (2018), pp. 1319-1327.
DOI URL |
[29] |
P. Li, C. Schille, E. Schweizer, F. Rupp, A. Heiss, C. Legner, L. Scheideler, Int. J. Mol. Sci., 19 (2018), p. 755.
DOI URL |
[30] | A. Kafri, S. Ovadia, G. Yosafovich-Doitch, E. Aghion, J. Mater. Sci. Mater.Med., 29 (2018), p. 94. |
[31] |
Z.B. Tang, J.L. Niu, H. Huang, H. Zhang, J. Pei, J.M. Ou, G.Y. Yuan, J. Mech. Behav. Biomed. Mater., 72 (2017), pp. 182-191.
DOI URL |
[32] |
P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. Part B, 106 (2018), pp. 245-258.
DOI URL |
[33] |
S. Zhao, J.M. Seitz, R. Eifler, H.J. Maier, R.J. Guillory II, E.J. Earley, J.W. Drelich, Mater. Sci. Eng. C, 76 (2017), pp. 301-312.
DOI URL |
[34] |
M. Wątroba, W. Bednarczyk, J. Kawałko, P. Bała, Mater. Charact., 142 (2018), pp. 187-194.
DOI URL |
[35] |
G.L. Leone, H.W. Kerr, J. Cryst. Growth, 32 (1976), pp. 111-116.
DOI URL |
[36] |
J.Y. Uriu-Adams, C.L. Keen, Mol. Asp. Med., 26 (2005), pp. 268-298.
DOI URL |
[37] |
T.H. Muster, W.D. Ganther, I.S. Cole, Corros. Sci., 49 (2007), pp. 2037-2058.
DOI URL |
[38] | C.H. Mathewson, Zinc: the Science and Technology of the Metal, its Alloys and Compounds Reinhold Publishing Corporation, London, (1959) . |
[39] | J.L. Niu, Z.B. Tang, H. Huang, J. Pei, H. Zhang, G.Y. Yuan, W.J. Ding, Mater. Sci. Eng. C, 69 (2016), pp. 407-413. |
[40] |
Z.Z. Shi, J. Yu, X.F. Liu, Mater. Des., 144 (2018), pp. 343-352.
DOI URL |
[41] |
J.X. Lin, X. Tong, Z.M. Shi, D.C. Zhang, L.S. Zhang, K. Wang, A.P. Wei, L.F. Jin, J.G. Lin, Y.C. Li, C.E. Wen, Acta Biomater., 106 (2020), pp. 410-427.
DOI URL |
[42] |
Y.L. Dai, Y. Zhang, H. Liu, H.J. Fang, D. Li, X.M. Xu, Y. Yan, L.J. Chen, Y.J. Lu, K. Yu, Mater. Lett., 235 (2019), pp. 220-223.
DOI URL |
[43] | M. Dambatta, S. Izman, D. Kurniawan, H. Hermawan, J. King, Saud Univ. Sci., 29 (2017), pp. 455-461. |
[44] | ASTM E8/E 8M-16 Standard Test Methods for Tension Testing of Metallic Materials ASTM International, West Conshohocken, PA (2011) . |
[45] |
L.J. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, L.N. Wang, Corros. Sci., 153 (2019), pp. 341-356.
DOI URL |
[46] | ASTM G31-72 Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM International, West Conshohocken, PA (2004) . |
[47] | ISO 10993-4: 2002/Amd 1: 2006 Biological Evaluation of Medical Devices. Part 4: Selection of Tests for Interactions With Blood International Organisation for Standardization, Geneva, Switzerland (2006). |
[48] | ISO 10993-5: 2009 Biological Evaluation of Medical Devices. Part 5: Tests for in Vitro Cytotoxicity International Organisation for Standardization, Geneva, Switzerland(2009). |
[49] | DIN EN ISO 20645-2004 Textile Fabrics-Determination of Antibacterial Activity-Agar Diffusion Plate Test (2004) . |
[50] | Z. Zermout, M. Durand-Charre, G. Kapelski, B. Baudelet, Z. Metallkd, 87 (1996), pp. 274-279. |
[51] | T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams ASM International (1990) . |
[52] |
J.A. Spittle, Metallography, 5 (1972), pp. 423-447.
DOI URL |
[53] | R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles (fourth ed.), Cengage Learning (2009) . |
[54] | G. Boczkal, Mod. Aspects Bulk Cryst. Thin Film Prep., 106 (2012), pp. 141-162. |
[55] |
J.C. Lin, C.L. Liang, K.L. Lin, Mater. Sci. Eng. A, 765 (2019), 138323.
DOI URL |
[56] |
L. Zhang, X.Y. Liu, H. Huang, W. Zhan, Mater. Lett., 244 (2019), pp. 119-122.
DOI PMID |
[57] |
M.A. Arenas, J.D. Damborenea, Surf. Coat. Technol., 200 (2005), pp. 2085-2091.
DOI URL |
[58] |
Z.Z. Shi, W.S. Bai, X.F. Liu, H.J. Zhang, Y.X. Yin, L.N. Wang, Mater. Charact., 158 (2019), 109993.
DOI URL |
[59] | W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction Wiley, New York (2018) . |
[60] | C.M. Sellars, J.A. Whiteman, Met. Sci., 13 (1979), pp. 187-194. |
[61] |
T. Zühlke, J. Alkorta, C. García-Rosales, A. Domínguez, I. Fernández, J.G. Sevillano, Mater. Sci. Technol., 30 (2014), pp. 91-95.
DOI URL |
[62] |
W. Wang, A.L. Helbert, T. Baudin, F. Brisset, R. Penelle, Mater. Charact., 64 (2012), pp. 1-7.
DOI URL |
[63] |
X. Hu, Z. Qi, F. Qin, J. Chen, Energy Power Eng., 3 (2011), pp. 490-498.
DOI URL |
[64] |
X. Niu, G. Li, Z. Zhang, P. Zhou, H. Wang, S. Zhang, W. Cheng, Mater. Sci. Eng. A, 743 (2019), pp. 207-216.
DOI URL |
[65] |
Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, G. Yuan, Mater. Des., 117 (2017), pp. 84-94.
DOI URL |
[66] |
R. Yue, H. Huang, G. Ke, H. Zhang, J. Pei, G. Xue, G. Yuan, Mater. Charact., 134 (2017), pp. 114-122.
DOI URL |
[67] |
H. Amano, K. Miyake, A. Hinoki, K. Yokota, F. Kinoshita, A. Nakazawa, H. Uchida, World J. Clin. Cases, 8 (2020), pp. 504-516.
DOI URL |
[68] | Y.H. Wang, L.R. Xiao, X.J. Zhao, W. Zhang, Y.F. Song, L. Guo, Y. Wang, Mater. Corros., 67 (2016), pp. 297-304. |
[69] | S.Y. Ji, S.H. Liang, K.X. Song, H.X. Li, Z. Li, Mater. Corros., 68 (2016), pp. 458-468. |
[70] |
S. Kumar, M. Chakraborty, V.S. Sarma, B.S. Murty, Wear, 265 (2008), pp. 134-142.
DOI URL |
[71] |
A.T. Alpas, J. Zhang, Metall. Mater. Trans. A, 25 (1994), pp. 969-983.
DOI URL |
[72] | J. Stolarz, J. Foct, Mater. Sci. Eng. A, 319 (2001), pp. 501-505. |
[73] |
P. Harlin, P. Carlsson, U. Bexell, M. Olsson, Surf. Coat. Technol., 201 (2006), pp. 4253-4259.
DOI URL |
[74] | A. Zmitrowicz, J. Theor. App. Mech., 44 (2006), pp. 219-253. |
[75] | D.G. Poitout, Biomechanics and Biomaterials in Orthopedics Springer London (2004) . |
[76] |
C.C. Tsai, R.M. Deppisch, L.J. Forrestal, G.H. Ritzau, A.D. Oram, H.J. Göhl, M.E. Voorhees, ASAIO J., 40 (1994), pp. 619-624.
PMID |
[77] | Y.J. Gu, P.W. Boonstra, C. Akkerman, H. Mungroop, W.V. Oeveren, Int. J.Artif. Org., 17 (1994), pp. 543-548. |
[78] |
C. Delaunay, I. Petit, I.D. Learmonth, P. Oger, P.A. Vendittoli, Orthop. Traumatol. Surg. Res., 96 (2010), pp. 894-904.
DOI URL |
[79] |
Z. Zhen, X.L. Liu, T. Huang, T.F. Xi, Y.F. Zheng, Mater. Sci. Eng. C, 46 (2015), pp. 202-206.
DOI URL |
[80] |
Y. Li, C. Wong, J. Xiong, P. Hodgson, C. Wen, J. Dent. Res., 89 (2010), pp. 493-497.
DOI URL |
[81] | Y.H. Luo, L.W. Chang, P. Lin, Biomed. Res. Int., 2015 (2015), 143720. |
[82] |
D. Bian, W.R. Zhou, J.X. Deng, Y. Liu, W.T. Li, X. Chu, P. Xiu, H. Cai, Y.H. Kou, B.G. Jiang, Y.F. Zheng, Acta Biomater., 64 (2017), pp. 421-436.
DOI URL |
[83] |
P. Trumbo, A.A. Yates, S. Schlicker, M. Poos, J. Am. Diet. Assoc., 101 (2001), pp. 294-301.
PMID |
[84] |
H. Tapiero, K.D. Tew, Biomed. Pharmacother., 57 (2003), pp. 399-411.
PMID |
[85] |
Y. Oba, A. Yasue, K. Kaneko, R. Uchida, A. Shioyasono, K. Moriyama, Orthod. Waves, 67 (2008), pp. 1-8.
DOI URL |
[86] |
X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, Y.X. Li, Mater. Lett., 64 (2010), pp. 1871-1874.
DOI URL |
[87] |
J. Ma, N. Zhao, D.H. Zhu, ACS Biomater. Sci. Eng., 1 (2015), pp. 1174-1182.
DOI URL |
[88] |
J.L. Wang, F. Witte, T.F. Xi, Y.F. Zheng, K. Yang, Y.S. Yang, D.W. Zhao, J. Meng, Y.D. Li, W.R. Li, K.M. Chan, L. Qin, Acta Biomater., 21 (2015), pp. 237-249.
DOI URL |
[89] |
J.G. Watson, J. Clin. Pathol., 36 (1983), pp. 683-692.
PMID |
[90] |
R.O. Darouiche, N. Engl. J. Med., 350 (2004), pp. 1422-1429.
DOI URL |
[91] |
D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials, 34 (2013), pp. 8018-8029.
DOI PMID |
[92] |
R.O. Darouiche, I.I. Raad, S.O. Heard, J.I. Thornby, O.C. Wenker, A. Gabrielli, R.L. Harris, New England J. Med., 340 (1999), pp. 1-8.
DOI URL |
[93] |
H. Gollwitzer, K. Ibrahim, H. Meyer, W. Mittelmeier, R. Busch, A. Stemberger, J. Antimicrob. Chemother., 51 (2003), pp. 585-591.
DOI URL |
[94] |
D.L. Veenstra, S. Saint, S. Saha, T. Lumley, S.D. Sullivan, JAMA, 281 (1999), pp. 261-267.
DOI URL |
[95] |
J. Li, Y. Zhao, J. Coat. Technol. Res., 9 (2012), pp. 223-228.
DOI URL |
[96] |
Q.X. Li, H.A. Tang, Y.Z. Li, M. Wang, L.F. Wang, C.G. Xia, J. Inorg. Biochem., 78 (2000), pp. 167-174.
PMID |
[97] |
A. Top, S. Ülkü, Appl. Clay Sci., 27 (2004), pp. 13-19.
DOI URL |
[98] |
C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, G. Tan, Chem. Res. Toxicol., 28 (2015), pp. 1815-1822.
DOI URL |
[99] |
X. Wang, S. Liu, M. Li, P. Yu, X. Chu, L. Li, C. Ning, J. Inorg. Biochem., 163 (2016), pp. 214-220.
DOI URL |
[100] |
J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Mater. Sci. Eng. C, 35 (2014), pp. 392-400.
DOI URL |
[101] |
M. Chen, L. Yang, L. Zhang, Y. Han, Z. Lu, G. Qin, E. Zhang, Mater. Sci. Eng. C, 75 (2017), pp. 906-917.
DOI URL |
[102] |
H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Acta Biomater., 8 (2012), pp. 904-915.
DOI PMID |
[103] |
C. Zhou, H.F. Li, Y.X. Yin, Z.Z. Shi, T. Li, X.Y. Feng, J.W. Zhang, C.X. Song, X.S. Cui, K.L. Xu, Y.W. Zhao, W.B. Hou, S.T. Lu, G. Liu, M.Q. Li, J.Y. Ma, E. Toft, A.A. Volinsky, M. Wan, X.J. Yao, C.B. Wang, K. Yao, S.K. Xu, H. Lu, S.F. Chang, J.B. Ge, L.N. Wang, H.J. Zhang, Acta Biomater., 97 (2019), pp. 657-670.
DOI URL |
[1] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[2] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[3] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[4] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[5] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[6] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[7] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[8] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[9] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[10] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
[11] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[12] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[13] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[14] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[15] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||