J. Mater. Sci. Technol. ›› 2021, Vol. 68: 91-102.DOI: 10.1016/j.jmst.2020.08.013
• Research Article • Previous Articles Next Articles
Qiuzhi Gaoa,b,*(), Ziyun Liua,b, Huijun Lic, Hailian Zhangd,**(
), Chenchen Jianga,b, Aimin Haoa,b, Fu Qua,b, Xiaoping Lina,b
Received:
2020-04-26
Revised:
2020-06-16
Accepted:
2020-06-27
Published:
2021-03-30
Online:
2021-05-01
Contact:
Qiuzhi Gao,Hailian Zhang
About author:
**hailianchina@126.com(H. Zhang).Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling[J]. J. Mater. Sci. Technol., 2021, 68: 91-102.
Fe | Cr | Ni | Al | Nb | Si | Ti | Mn | Mo | C | W | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 11.16 | 20.54 | 3.96 | 2.02 | 0.14 | 0.013 | 2.06 | 2.25 | 0.06 | 0.05 | 0.05 |
Table 1 Chemical composition of AFA steel used in the present work (wt.%).
Fe | Cr | Ni | Al | Nb | Si | Ti | Mn | Mo | C | W | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 11.16 | 20.54 | 3.96 | 2.02 | 0.14 | 0.013 | 2.06 | 2.25 | 0.06 | 0.05 | 0.05 |
Samples | Fraction of CSL boundary (%) | Average grain size (μm) | Number of measured grains |
---|---|---|---|
As-received | 4.73 | 3.41 | 860 |
30 % cold-rolled | 2.87 | 3.58 | 863 |
Table 2 Average grain size and fraction of CSL boundary of as-received sample and 30 % cold-rolled sample prior to high-temperature oxidation.
Samples | Fraction of CSL boundary (%) | Average grain size (μm) | Number of measured grains |
---|---|---|---|
As-received | 4.73 | 3.41 | 860 |
30 % cold-rolled | 2.87 | 3.58 | 863 |
Fig. 2. Grain boundary character map of the (a) as-received and (b) 30 % cold-rolled AFA steels. Black lines and colored lines represent the random boundaries and the CSL boundaries, respectively.
Fig. 4. Microstructures of the 30 % cold-rolled sample before high-temperature oxidation test: (a) TEM image of grain boundary and dislocation; (b) HRTEM image of grain boundary.
Fig. 6. (a) XRD patterns of oxide scales formed for the investigative samples after oxidation for 10 h, 100 h and 600 h at 700 °C in dry air, and (b) magnified micrograph of the rectangular area.
Fig. 7. Microstructures of the 30 % cold-rolled sample oxidized for 100 h: (a) TEM image of grain boundary; (b) HRTEM image of grain boundary; (c) TEM image of Laves; (d) SAD of Laves; (e) TEM image of B2-NiAl; (f) SAD of B2-NiAl.
Fig. 8. SEM images of surface morphologies: (a, c, e) as-received samples oxidized for 10 h, 100 h, 600 h; (b, d, f) 30 % cold-rolled samples oxidized for 10 h, 100 h, 600 h.
Area | O | Al | Fe | Cr | Mn | Nb | Ni |
---|---|---|---|---|---|---|---|
1 | 43.81 | 19.11 | 16.45 | 9.34 | 7.49 | 0.00 | 3.64 |
2 | 55.88 | 11.76 | 8.31 | 4.02 | 16.31 | 1.34 | 1.55 |
Table 3 EDS point analysis results (at.%) at areas 1, 2 for as-received and 30 % cold-rolled AFA samples shown in Fig. 8 (after oxidation for 100 h).
Area | O | Al | Fe | Cr | Mn | Nb | Ni |
---|---|---|---|---|---|---|---|
1 | 43.81 | 19.11 | 16.45 | 9.34 | 7.49 | 0.00 | 3.64 |
2 | 55.88 | 11.76 | 8.31 | 4.02 | 16.31 | 1.34 | 1.55 |
Fig. 9. Backscattered electron images of as-received samples after oxidation for different time and EDS area maps for various elements: (a) 10 h; (b) 100 h; (c) 600 h.
Fig. 10. Backscattered electron images of 30 % cold-rolled samples after oxidation for different time and EDS area maps for various elements: (a) 10 h; (b) 100 h; (c) 600 h.
Samples | 10 h | 100 h | 600 h |
---|---|---|---|
As-received | - | 1.16 % | 2.24 % |
30 % cold-rolled | 2.46 % | 3.23 % | 11.68 % |
Table 4 Volume fractions of B2-NiAl of as-received and 30 % cold-rolled steels after oxidation for 10 h, 100 h and 600 h.
Samples | 10 h | 100 h | 600 h |
---|---|---|---|
As-received | - | 1.16 % | 2.24 % |
30 % cold-rolled | 2.46 % | 3.23 % | 11.68 % |
Fig. 11. Schematic diagrams illustrating oxidation of the 30 % cold-rolled sample in dry air at 700 °C: (OM-I) fast oxidation stage, (OM-II) selective oxidation stage, (OM-III) stable oxidation stage.
[1] |
Q. Gao, F. Qu, H. Zhang, Q. Huo, J. Mater. Res., 31 (2016), pp. 1732-1740.
DOI URL |
[2] |
Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, H. Li, J. Alloys Compd., 771 (2019), pp. 526-533.
DOI URL |
[3] |
C. Zhuang, Z. Xu, S. Huang, Y. Xia, C. Wang, Q. Shen, J. Mater. Sci. Technol., 39 (2020), pp. 82-88.
DOI URL |
[4] |
Y. Xu, L.P.H. Jeurgens, P. Schützendübe, S. Zhu, Y. Huang, Y. Liu, Z. Wang, J. Mater. Sci. Technol., 40 (2020), pp. 128-134.
DOI URL |
[5] |
Y. Liao, B. Zhang, M. Chen, M. Feng, J. Wang, S. Zhu, F. Wang, Corros. Sci., 167 (2020), 108526.
DOI URL |
[6] |
Q. Shi, W. Yan, Y. Li, N. Zhang, Y. Shan, K. Yang, H. Abe, J. Mater. Sci. Technol., 64 (2021), pp. 114-125.
DOI URL |
[7] |
Z. Yu, M. Chen, C. Shen, S. Zhu, F. Wang, Corros. Sci., 121 (2017), pp. 105-115.
DOI URL |
[8] |
Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, E.A. Payzant, Science, 316 (2007), pp. 433-436.
DOI URL |
[9] |
Z. Liu, Q. Gao, H. Zhang, S. Luo, X. Zhang, W. Li, Y. Jiang, H. Li, Mater. Sci. Eng. A, 755 (2019), pp. 106-115.
DOI URL |
[10] |
Y. Jiang, Q. Gao, H. Zhang, X. Zhang, H. Li, Z. Liu, C. Liu, Mater. Sci. Eng. A, 748 (2019), pp. 161-172.
DOI URL |
[11] |
Q. Gao, H. Zhang, H. Li, X. Zhang, F. Qu, Y. Jiang, Z. Liu, C. Jiang, J. Mater. Sci., 54 (2019), pp. 8760-8777.
DOI URL |
[12] |
B. Jiang, D. Wen, Q. Wang, J. Che, C. Dong, P.K. Liaw, F. Xu, L. Sun, J. Mater. Sci. Technol., 35 (2019), pp. 1008-1016.
DOI URL |
[13] |
Y. Yamamoto, M.P. Brady, Z.P. Lu, C.T. Liu, M. Takeyama, P.J. Maziasz, B.A. Pint, Metall. Mater. Trans. A, 38 (2007), pp. 2737-2746.
DOI URL |
[14] |
Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Intermetallics, 16 (2008), pp. 453-462.
DOI URL |
[15] |
M.P. Brady, Y. Yamamoto, M.L. Santella, L.R. Walker, Oxid. Met., 72 (2009), pp. 311-333.
DOI URL |
[16] |
J. Li, L. Wei, J. He, H. Chen, H. Guo, J. Mater. Sci. Technol., 58 (2020), pp. 63-72.
DOI URL |
[17] |
J. Wang, Y. Qiao, N. Dong, X. Fang, X. Quan, Y. Cui, P. Han, Oxid. Met., 89 (2018), pp. 713-730.
DOI URL |
[18] |
Z. Hu, Y. Xu, Y. Chen, P. Schützendübe, J. Wang, Y. Huang, Y. Liu, Z. Wang, J. Mater. Sci. Technol., 35 (2019), pp. 1479-1484.
DOI URL |
[19] |
Z. Zhu, H. Xu, D. Jiang, X. Mao, N. Zhang, Corros. Sci., 113 (2016), pp. 172-179.
DOI URL |
[20] | J. Ju, C. Chao, S.Q. Ma, M.D. Kang, K.M. Wang, J.J. Li, H.G. Fu, J. Wang, Corros. Sci., 170 (2020), pp. 1-13. |
[21] |
X. Wang, J.A. Szpunar, J. Alloys Compd., 752 (2018), pp. 40-52.
DOI URL |
[22] |
M. Sekine, N. Sakaguchi, M. Endo, H. Kinoshita, S. Watanabe, H. Kokawa, S. Yamashita, Y. Yano, M. Kawai, J. Nucl. Mater., 414 (2011), pp. 232-236.
DOI URL |
[23] |
Z. Huang, Y. Jiang, A. Hou, P. Wang, Q. Shi, Q. Hou, X. Liu, J. Mater. Sci. Technol., 33 (2017), pp. 1531-1539.
DOI URL |
[24] |
W. Peng, J. Wang, H. Zhang, X. Hong, Z. Wu, Y. Xu, J. Li, X. Xiao, Corros. Sci., 126 (2017), pp. 197-207.
DOI URL |
[25] | J.K. Heon, B.K. Kim, D. Kim, P.C. Pa, D. Raabe, K. Yi, Woo Corros. Sci., 96 (2015), pp. 52-66. |
[26] |
V. Parry, A. Col, C. Pascal, Corros. Sci., 160 (2019), 108149.
DOI URL |
[27] |
M. Nezakat, H. Akhiani, S. Penttilä, S.M. Sabet, J. Szpunar, Corros. Sci., 94 (2015), pp. 197-206.
DOI URL |
[28] |
H. Dong, Z. Ye, P. Wang, D. Li, Y. Zhang, Y. Li, J. Nucl. Mater., 476 (2016), pp. 213-217.
DOI URL |
[29] |
Z. Shen, D. Tweddle, M.T. Lapington, B. Jenkins, D. Du, L. Zhang, M.P. Moody, S. Lozano-Perez, Scr. Mater., 173 (2019), pp. 144-148.
DOI URL |
[30] |
S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Mater., 57 (2009), pp. 4148-4157.
DOI URL |
[31] |
Q. Dai, X. Ye, H. Ai, S. Chen, L. Jiang, J. Liang, K. Yu, B. Leng, Z. Li, X. Zhou, Corros. Sci., 133 (2018), pp. 349-357.
DOI URL |
[32] |
L. Tan, K. Sridharan, T.R. Allen, J. Nucl. Mater., 348 (2006), pp. 263-271.
DOI URL |
[33] |
Y. Guo, E.H. Han, J. Wang, J. Mater. Sci. Technol., 31 (2015), pp. 403-412.
DOI URL |
[34] |
R.J. Vikram, S. Gaddam, R. Kalsar, S. Acharya, S. Suwas, Materialia, 7 (2019), 100398.
DOI URL |
[35] |
C.N. Athreya, K. Deepak, D. Kim, I.B. de Boer, S. Mandal, V.S. Sarma, J. Alloys Compd., 778 (2019), pp. 224-233.
DOI URL |
[36] |
L. Volpe, M.G. Burke, F. Scenini, Acta Mater., 175 (2019), pp. 238-249.
DOI PMID |
[37] |
Y. Chen, X. Zhao, M. Bai, A. Chandio, R. Wu, P. Xiao, Acta Mater., 86 (2015), pp. 319-330.
DOI URL |
[38] |
K. Oh ishi, Z. Horita, D.J. Smith, T.G. Langdon, J. Mater. Res., 16 (2011), pp. 583-589.
DOI URL |
[39] |
G. Trotter, G. Rayner, I. Baker, P.R. Munroe, Intermetallics, 53 (2014), pp. 120-128.
DOI URL |
[40] |
D.H. Wen, Z. Li, B.B. Jiang, Q. Wang, G.Q. Chen, R. Tang, R.Q. Zhang, C. Dong, P.K. Liaw, Mater. Charact., 144 (2018), pp. 86-98.
DOI URL |
[41] |
M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, C. Lee, Mater. Charact., 137 (2018), pp. 1-8.
DOI URL |
[42] | H. Xing, A. Dong, J. Huang, J. Zhang, B. Sun, J. Mater. Sci. Technol., 34 (2018), pp. 620-626. |
[43] |
Q. Gao, Y. Jiang, Z. Liu, H. Zhang, C. Jiang, X. Zhang, H. Li, Mater. Sci. Eng. A, 779 (2020), 139139.
DOI URL |
[44] |
N.M. Yanar, B.S. Lutz, F.L. Garcia, M.P. Brady, G.H. Meier, Oxid. Met., 84 (2015), pp. 541-565.
DOI URL |
[45] |
F.H. Stott, G.C. Wood, J. Stringert, Oxid. Met., 44 (1995), pp. 113-145.
DOI URL |
[46] |
G. Berthomé, E. N’Dah, Y. Wouters, A. Galerie, Mater. Corros., 56 (2005), pp. 389-392.
DOI URL |
[47] |
S. Rashidi, J.P. Choi, J.W. Stevenson, A. Pandey, R.K. Gupta, JOM, 71 (2018), pp. 109-115.
DOI URL |
[48] |
L. Liu, Z. Yang, C. Zhang, M. Ueda, K. Kawamura, T. Maruyama, Corros. Sci., 91 (2015), pp. 195-202.
DOI URL |
[49] |
P. Xu, L.Y. Zhao, K. Sridharan, T.R. Allen, J. Nucl. Mater., 422 (2012), pp. 143-151.
DOI URL |
[50] |
R. Elger, R. Pettersson, Oxid. Met., 82 (2014), pp. 469-490.
DOI URL |
[51] |
W. Qi, J. Wang, X. Li, Y. Cui, Y. Zhao, J. Xie, G. Zeng, Q. Gao, T. Zhang, F. Wang, J. Mater. Sci. Technol., 64 (2021), pp. 153-164.
DOI URL |
[52] |
H. Dong, Z. Ye, P. Wang, D. Li, Y. Zhang, Y. Li, J. Nucl. Mater., 476 (2016), pp. 213-217.
DOI URL |
[53] |
R. Naraparaju, H.J. Christ, F.U. Renner, A. Kostka, Oxid. Met., 76 (2011), pp. 233-245.
DOI URL |
[54] |
Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu, Acta Mater., 51 (2003), pp. 4319-4329.
DOI URL |
[55] |
Y. Qiao, J. Wang, Z. Zhang, X. Quan, J. Liu, X. Fang, P. Han, Oxid. Met., 88 (2017), pp. 301-314.
DOI URL |
[56] |
M.P. Brady, K.A. Unocic, M.J. Lance, M.L. Santella, Y. Yamamoto, L.R. Walker, Oxid. Met., 75 (2011), pp. 337-357.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||