J. Mater. Sci. Technol. ›› 2021, Vol. 68: 103-111.DOI: 10.1016/j.jmst.2020.08.002
• Research Article • Previous Articles Next Articles
Ziqi Guana, Jing Baia,b,d,*(), Jianglong Guc, Xinzeng Lianga, Die Liua,b, Xinjun Jianga,b, Runkai Huanga,b, Yudong Zhange, Claude Eslinge, Xiang Zhaoa, Liang Zuoa,**(
)
Received:
2020-04-05
Revised:
2020-05-28
Accepted:
2020-06-27
Published:
2021-03-30
Online:
2021-05-01
Contact:
Jing Bai,Liang Zuo
About author:
**lzuo@mail.neu.edu.cn (L. Zuo).Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys[J]. J. Mater. Sci. Technol., 2021, 68: 103-111.
Fig. 3. Four possible configurations of the partial disordered B2 structure and the energy difference between the B2 and L21 structure with different magnetic states for the Ni8Mn4Ti4 alloy (Since the ferromagnetic L21 structure has the lowest formation energy, it is used to compare with the B2 structure). (a) One Ti atom exchanged with the nearest neighboring Mn atom; (b) One Ti atom exchanged with the farthest Mn atom; (c) Two Ti atoms exchanged with the nearest neighboring Mn atoms; (d) one Ti atom exchanged with the nearest neighboring Mn atom and one Ti atom exchanged with the farthest Mn atom.
Fig. 4. (a, b) two possible configurations of the PD L10 martensite; (c) the formation energy (Ef) of the B2 austenite and PD L10 martensite of the Ni8Mn4Ti4 alloy.
Fig. 5. Two possible B2 partial disordered structures and the energy difference between the B2 and L21 structure of Ni8Mn5Ti3 alloy with different magnetic states. (a) One Ti atom exchanged with the nearest neighboring Mn atom; (b) One Ti atom exchanged with the farthest Mn atom.
Fig. 6. Three possible PD L10 structures and the corresponding formation energies of the Ni8Mn5Ti3 alloy. (a), (b) and (c) are the possible site occupations with one excess Mn atom in the L10 structure. (d), (e) and (f) are the possible site occupations for one Ti atom exchanged with the nearest neighboring Mn.
Fig. 7. The formation energy of the B2 austenite and corresponding PD L10 martensite with ferromagnetic and antiferromagnetic states in the Ni8Mn5Ti3 alloy.
Fig. 9. Formation energy of the austenite and martensite for the Ni8Mn4+xTi4-x (x = 0, 1 and 2) alloys (There is no martensitic transformation in the Ni8Mn4Ti4 alloy).
Phase | Lattice parameters | Mn doping content, x | ||
---|---|---|---|---|
x = 0 | x = 1 | x = 2 | ||
Austenite | a = b = c (Å) | 5.9001 | 5.8755 | 5.8473 |
5.9315 [ | 5.9218 [ | 5.897 [ | ||
5.9343 [ | ||||
Martensite | a (Å) b (Å) | // // | 8.5167 8.5452 [ [ 4.2800 4.3763 [ [ | 8.4834 4.2464 |
c (Å) | // | 5.5126 5.5236 [ [ | 5.4495 |
Table 1 Optimized equilibrium lattice parameters of austenite and martensite for the Ni8Mn4+xTi4-x (x = 0, 1 and 2) alloys (There is no martensitic transformation in the Ni8Mn4Ti4 alloy).
Phase | Lattice parameters | Mn doping content, x | ||
---|---|---|---|---|
x = 0 | x = 1 | x = 2 | ||
Austenite | a = b = c (Å) | 5.9001 | 5.8755 | 5.8473 |
5.9315 [ | 5.9218 [ | 5.897 [ | ||
5.9343 [ | ||||
Martensite | a (Å) b (Å) | // // | 8.5167 8.5452 [ [ 4.2800 4.3763 [ [ | 8.4834 4.2464 |
c (Å) | // | 5.5126 5.5236 [ [ | 5.4495 |
System | C11 (GPa) | C12 (GPa) | C44 (GPa) | B (GPa) | G (GPa) | Y (GPa) | υ | B/G |
---|---|---|---|---|---|---|---|---|
Ni2MnTi | 153.89 | 146.14 | 77.27 | 148.72 | 33.23 | 92.78 | 0.40 | 4.48 |
Ni2MnGa | 155.02 | 139.63 | 103.28 | 144.76 | 45.93 | 124.60 | 0.36 | 3.15 |
Ni2MnIn | 150.89 | 132.76 | 95.95 | 138.81 | 43.82 | 118.94 | 0.38 | 3.17 |
Table 2 The elastic constants of the Ni2MnTi, Ni2MnGa and Ni2MnIn alloys.
System | C11 (GPa) | C12 (GPa) | C44 (GPa) | B (GPa) | G (GPa) | Y (GPa) | υ | B/G |
---|---|---|---|---|---|---|---|---|
Ni2MnTi | 153.89 | 146.14 | 77.27 | 148.72 | 33.23 | 92.78 | 0.40 | 4.48 |
Ni2MnGa | 155.02 | 139.63 | 103.28 | 144.76 | 45.93 | 124.60 | 0.36 | 3.15 |
Ni2MnIn | 150.89 | 132.76 | 95.95 | 138.81 | 43.82 | 118.94 | 0.38 | 3.17 |
Fig. 11. Dependence of total magnetic moments on the excess Mn content for Ni8Mn4+xTi4-x (x = 0, 1 and 2) alloys (There is no martensitic transformation in the Ni8Mn4Ti4 alloy).
Composition Distance (Å) | x = 0 FA L21 | x = 0 AFA B2 | x = 1 AFA B2 | x = 2 AFA B2 | x = 0 FM L10 | x = 0 AFM PD L10 | x = 1 AFM PD L10 | x = 2 AFM PD L10 |
---|---|---|---|---|---|---|---|---|
MnMn-MnMn MnMn-MnTi | 4.19 | 4.12/4.27 | ||||||
2.95 | 2.93 | 2.92 | 2.73/2.78 | 2.67/2.73 | 2.64/2.73 |
Table 3 Mn-Mn atomic distance of austenite and martensite for Ni8Mn4+xTi4-x (x = 0, 1 and 2) alloys. (Bold italic represents fully ordered structure).
Composition Distance (Å) | x = 0 FA L21 | x = 0 AFA B2 | x = 1 AFA B2 | x = 2 AFA B2 | x = 0 FM L10 | x = 0 AFM PD L10 | x = 1 AFM PD L10 | x = 2 AFM PD L10 |
---|---|---|---|---|---|---|---|---|
MnMn-MnMn MnMn-MnTi | 4.19 | 4.12/4.27 | ||||||
2.95 | 2.93 | 2.92 | 2.73/2.78 | 2.67/2.73 | 2.64/2.73 |
Fig. 13. Total DOS of the austenite and martensite for (a) Ni8Mn4Ti4, (c) Ni8Mn5Ti3 and (e) Ni8Mn6Ti2. (b), (d) and (f) correspond to the total DOS near the Fermi level (EF) in the energy range marked by the red rectangle in (a), (c) and (e), respectively.
[1] |
Z. Chen, D. Cong, Y. Zhang, X. Sun, R. Li, S. Li, Z. Yang, C. Song, Y. Cao, Y. Ren, Y. Wang, J. Mater. Sci. Technol., 45 (2020), pp. 44-48.
DOI URL |
[2] |
H. Yan, Y. Zhang, N. Xu, A. Senyshyn, H.G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Acta Mater., 88 (2015), pp. 375-388.
DOI URL |
[3] |
L. Zhang, S. Ma, Q. Ge, K. Liu, Q. Jiang, X. Han, S. Yang, K. Yu, Z. Zhong, J. Mater. Sci. Technol., 33 (2017), pp. 1362-1370.
DOI URL |
[4] |
U. Devarajan, S. Singh, S.E. Muthu, G.K. Selvan, P. Sivaprakash, S.R. Barman, S. Arumugam, Appl. Phys. Lett., 105 (2014), 252401.
DOI URL |
[5] |
H. Liu, Z. Li, Y. Zhang, Z. Ni, K. Xu, Y. Liu, Scr. Mater., 177 (2020), pp. 1-5.
DOI URL |
[6] | A. Planes, M. Porta, T. Castán, A. Saxena, Mater. Sci. Eng. A.,438- 440 (2006), pp. 916-918. |
[7] |
X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater., 13 (2014), pp. 439-450.
DOI PMID |
[8] |
Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, R. Kainuma, Nature, 439 (2006), pp. 957-960.
PMID |
[9] |
R. Kainuma, K. Oikawa, W. Ito, Y. Sutou, T. Kanomata, K. Ishida, J. Mater. Chem., 18 (2000), p. 1837.
DOI URL |
[10] |
A. Çakır, M. Acet, U. Wiedwald, T. Krenke, M. Farle, Acta Mater., 127 (2017), pp. 117-123.
DOI URL |
[11] |
W.Q. He, H.B. Huang, Z.H. Liu, X.Q. Ma, Intermetallics, 90 (2017), pp. 140-146.
DOI URL |
[12] |
Z.Y. Wei, E.K. Liu, J.H. Chen, Y. Li, G.D. Liu, H.Z. Luo, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, Appl. Phys. Lett., 107 (2015), 022406.
DOI URL |
[13] |
Z.Y. Wei, W. Sun, Q. Shen, Y. Shen, Y.F. Zhang, E.K. Liu, J. Liu, Appl. Phys. Lett., 114 (2019), 101903.
DOI URL |
[14] | D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, Y. Wang, Phys. Rev. Lett., 122(2019). |
[15] | A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.L. Tamarit, W. Xiong, D. Cong, C. Popescu, L. Mañosa, Phys. Rev. Mater., 3 (2019), 044406. |
[16] |
H.L. Yan, L.D. Wang, H.X. Liu, X.M. Huang, N. Jia, Z.B. Li, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Mater. Des., 184 (2019), 108180.
DOI URL |
[17] | J. Tuek, K. Engelbrecht, R. Milln-Solsona, L. Maosa, E. Vives, L.P. Mikkelsen, N. Pryds, Adv. Energy. Mater., 5 (2015), pp. 1-5. |
[18] |
Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Acta Mater., 127 (2017), pp. 33-42.
DOI URL |
[19] |
F. Xiao, M. Jin, J. Liu, X. Jin, Acta Mater., 96 (2015), pp. 292-300.
DOI URL |
[20] |
E. Bonnot, R. Romero, L. Mañosa, E. Vives, A. Planes, Phys. Rev. Lett., 100 (2008), 125901.
PMID |
[21] |
T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Appl. Phys. Lett., 106 (2015), 021901.
DOI URL |
[22] |
V.K. Pecharsky, K.A. Gschneidner, Jr. Phys. Rev. Lett., 78 (1997), p. 4494.
DOI URL |
[23] |
F. Guillou, G. Porcari, H. Yibole, N. van Dijk, E. Brück, Adv. Mater., 26 (2014), p. 2671.
DOI URL |
[24] |
X.J. He, K. Xu, S.X. Wei, Y.L. Zhang, Z. Li, C. Jing, J. Mater. Sci., 52 (2017), p. 2915.
DOI URL |
[25] | Z.Y. Wei, Design of Magnetostructural Coupling and Magnetic Martensitic Transformations in Hexagonal MM’X and All-D-Metal Heusler Shape Memory Alloys, The University of Chinese Academy of Sciences (2017) (in Chinese)Ph.D. Thesis. |
[26] |
S. Liu, H. Xuan, T. Cao, L. Wang, Z. Xie, X. Liang, H. Li, L. Feng, F. Chen, P. Han, Phys. Status Solidi A, 216 (2019), 1900563.
DOI URL |
[27] |
J. Hafner, Acta Mater., 48 (2000), pp. 71-92.
DOI URL |
[28] |
G. Kresse, D. Joubert, Phys. Rev. B, 59 (1999), pp. 1758-1775.
DOI URL |
[29] |
P.E. Blöchl, Phys. Rev. B, 50 (1994), p. 17953.
DOI URL |
[30] |
G.K.G. Kern, J. Hafner, Phys. Rev. B, 59 (1999), pp. 8551-8559.
DOI URL |
[31] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996), pp. 3865-3868.
DOI URL |
[32] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976), pp. 5188-5192.
DOI URL |
[33] | D.C. Wallace, Thermodynamics of Crystals Wiley, New York (1972). |
[34] |
S. Paul, S. Ghosh J. Appl. Phys., 110 (2011), 063523.
DOI URL |
[35] | P.R. Alonso, G.H. Rubiolo, Phys. Rev. B, 62 (2000), pp. 237-242. |
[36] |
K. Liu, X. Han, K. Yu, C. Ma, Z. Zhang, Y. Song, S. Ma, H. Zeng, C. Chen, X. Luo, S.U. Rehman, Z. Zhong, Intermetallics, 110 (2019), p. 106472.
DOI URL |
[37] |
Z.W. Muthui, R.J. Musembi, J.M. Mwabora, A. Kashyap, J. Magn. Magn. Mater., 442 (2017), pp. 343-349.
DOI URL |
[38] | R.V.S. Prasad, M.M. Raja, G. Phanikumar, Adv.Mater. Res., 74 (2009), pp. 215-218. |
[39] |
Z. Ni, X. Guo, X. Liu, Y. Jiao, F. Meng, H. Luo, J. Alloys Compd., 775 (2019), pp. 427-434.
DOI URL |
[40] |
J. Bai, J.M. Raulot, Y.D. Zhang, C. Esling, L. Zuo, J. Appl. Phys., 109 (2011), 014908.
DOI URL |
[41] |
J. Bai, J.L. Wang, S.F. Shi, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Magn. Magn. Mater., 473 (2019), pp. 360-364.
DOI PMID |
[42] |
X.Z. Liang, J. Bai, J.L. Gu, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol., 44 (2020), pp. 31-41.
DOI URL |
[43] |
N. Xu, J.M. Raulot, Z.B. Li, J. Bai, B. Yang, Y.D. Zhang, J. Mater. Sci., 50 (2015), pp. 3825-3834.
DOI URL |
[44] |
J. Bai, N. Xu, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Appl. Phys., 113 (2013), 174901.
DOI URL |
[45] | H.B. Xiao, C.P. Yang, R.L. Wang, V.V. Marchenkov, K. Bärner, J. Appl. Phys., 112 (2012), pp. 295-570. |
[46] |
C.L. Tan, Y.W. Huang, X.H. Tian, J.X. Jiang, W. Cai, Appl. Phys. Lett., 100 (2012), 132402.
DOI URL |
[47] |
M. Ye, A. Kimura, Y. Miura, M. Shirai, Y.T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, Phys. Rev. Lett., 104 (2010), 176401.
DOI URL |
[48] |
P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B, 49 (1994), pp. 16223-16233.
DOI URL |
[49] |
J.C. Suits, Solid State Commun., 18 (1976), pp. 423-425.
DOI URL |
[50] |
H. Xiao, C. Yang, R. Wang, L. Xu, G. Liu, V.V. Marchenkov, Phys. Lett. A, 380 (2016), pp. 3414-3420.
DOI URL |
[51] |
N.V. Rama Rao, V. Chandrasekaran, K.G. Suresh, J. Appl. Phys., 108 (2010), 043913.
DOI URL |
[52] |
J. Enkovaara, O. Heczko, A. Ayuela, R.M. Nieminen, Phys. Rev. B, 67 (2003), 212405.
DOI URL |
[53] |
Q.Q. Zeng, J.L. Shen, H.N. Zhang, J. Chen, B. Ding, X.K. Xi, E.K. Liu, W.H. Wang, G.H. Wu, J. Phys.: Condens. Matter, 31 (2019), 425401.
DOI URL |
[54] |
A. Planes, L. Mañosa, X. Moya, T. Krenke, M. Acet, E.F. Wassermann, J. Magn. Magn. Mater., 310 (2007), pp. 2767-2769.
DOI URL |
[55] | X. Moya, L. Mañosa, A. Planes, T. Krenke, M. Acet, E.F. Wassermann, Mater. Sci. Eng. A,438- 440 (2006), pp. 911-915. |
[56] |
A.T. Zayak, W.A. Adeagbo, P. Entel, K.M. Rabe, Appl. Phys. Lett., 88 (2006), 111903.
DOI URL |
[57] | L. Guo, G. Hu, W.J. Feng, S.T. Zhang, Acta Phys.-Chim.Sin., 29 (2013), p. 929. |
[58] |
J. Xu, J.D. Wu, D.H. Lai, Z.H. Xie, P. Munroe, Mater. Sci. Tech-Lond., 28 (2012), p. 1337.
DOI URL |
[1] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[2] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[3] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[4] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[5] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[6] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[7] | Edward Charles Henry Crawford O’ Brien, Hemantha Kumar Yeddu. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears [J]. J. Mater. Sci. Technol., 2020, 49(0): 157-165. |
[8] | Boon Teoh Tan, Shunnian Wu, Franklin Anariba, Ping Wu. A DFT study on brittle-to-ductile transition of D022-TiAl3 using multi-doping and strain-engineered effects [J]. J. Mater. Sci. Technol., 2020, 51(0): 180-192. |
[9] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[10] | Xiaoyang Yi, Bin Sun, Weihong Gao, Xianglong Meng, Zhiyong Gao, Wei Cai, Liancheng Zhao. Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements [J]. J. Mater. Sci. Technol., 2020, 42(0): 113-121. |
[11] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[12] | Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 145-154. |
[13] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
[14] | Liu Linghong, Chen Jianghua, Fan Touwen, Shang Shunli, Shao Qinqin, Yuan Dingwang, Dai Yu. The stability of deformation twins in aluminum enhanced by alloying elements [J]. J. Mater. Sci. Technol., 2019, 35(11): 2625-2629. |
[15] | Yanchun Zhou, Huimin Xiang, Fu-Zhi Dai, Zhihai Feng. Cr5Si3B and Hf5Si3B: New MAB phases with anisotropic electrical, mechanical properties and damage tolerance [J]. J. Mater. Sci. Technol., 2018, 34(8): 1441-1448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||