J. Mater. Sci. Technol. ›› 2020, Vol. 40: 1-14.DOI: 10.1016/j.jmst.2019.08.035
Lijin Dongab, Cheng Maa, Qunjia Penga*(), En-Hou Hana, Wei Kea
Received:
2019-06-21
Revised:
2019-08-07
Accepted:
2019-08-20
Published:
2020-03-01
Online:
2020-04-01
Contact:
Peng Qunjia
Lijin Dong, Cheng Ma, Qunjia Peng, En-Hou Han, Wei Ke. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment[J]. J. Mater. Sci. Technol., 2020, 40: 1-14.
Fig. 1. Schematic illustration of the SA508-309 L/308 L-316 L weld joint and specimens:. (a) the location of SSRT and microstructure-analysis specimens, (b) the geometry and dimension of the SSRT specimen. All units are in mm.
Material | Fe | Cr | Ni | Mn | Si | C | Mo | P | S |
---|---|---|---|---|---|---|---|---|---|
SA508 | Bal. | 0.12 | 0.75 | 1.35 | 0.18 | 0.187 | 0.47 | 0.009 | 0.004 |
316 L | Bal. | 17.98 | 11.72 | 1.73 | 0.49 | 0.023 | 2.37 | 0.020 | 0.031 |
308 L | Bal. | 19.88 | 10.03 | 1.33 | 0.32 | 0.016 | - | 0.015 | 0.011 |
309 L | Bal. | 23.26 | 13.43 | 1.76 | 0.38 | 0.017 | - | 0.011 | 0.002 |
Table 1 Chemical composition (wt%) of the base and weld metals used for manufacturing the SA508-309 L/308 L-316 L weld joint.
Material | Fe | Cr | Ni | Mn | Si | C | Mo | P | S |
---|---|---|---|---|---|---|---|---|---|
SA508 | Bal. | 0.12 | 0.75 | 1.35 | 0.18 | 0.187 | 0.47 | 0.009 | 0.004 |
316 L | Bal. | 17.98 | 11.72 | 1.73 | 0.49 | 0.023 | 2.37 | 0.020 | 0.031 |
308 L | Bal. | 19.88 | 10.03 | 1.33 | 0.32 | 0.016 | - | 0.015 | 0.011 |
309 L | Bal. | 23.26 | 13.43 | 1.76 | 0.38 | 0.017 | - | 0.011 | 0.002 |
Fig. 2. OM observation of the SA508-309 L/308 L-316 L weld joint: (a) the FB region of the 308 L-316 L similar metal weld, (b) the LAS part of the SA508-309 L dissimilar metal weld, (c, d) the 309 L part of the SA508-309 L dissimilar metal weld, (e, f) the FB region of the 309 L-308 L similar metal weld.
Fig. 3. Microhardness distribution and composition profiles of the SA508-309 L/308 L-316 L weld joint: (a-c) microhardness distribution in the FB region of the SA508-309 L, 309 L-308 L and 308 L-316 L metal welds, respectively, (d-f) composition profiles of the FB region of the SA508-309 L, 309 L-308 L and 308 L-316 L metal welds, respectively.
Fig. 4. EBSD analyses of FB region of the SA508-309 L/308 L dissimilar metal weld: (a, d), inverse pole figures, (b, e), KAM maps, (c, f), grain boundary character distribution maps. In (b) and (e), the black lines represent high angle grain boundaries (∑ values bigger than 29), the white lines represent low angle grain boundaries (∑1), the red lines represent ∑3 grain boundaries, and the blue lines represent the coincidence site lattice grain boundary with ∑ values ranging from 5 to 29.
Fig. 6. SEM observation and TEM analyses of 308 L weld metal: (a) SEM back-scattered electron image of γ/γ boundary, (b) SEM back-scattered electron image of γ/δ boundary, (c) TEM image of the γ/δ boundary in DZ, (d) diffraction pattern of the carbide, (e) EDX mappings of the carbides, (f) composition profile across the carbide.
Fig. 7. SEM observation and TEM analyses of 309 L weld metal in different distances to the FB of SA508-309 L dissimilar metal weld: (a, b), about 50 μm to the FB, (c, d) about 200 μm to the FB, (e, f) about 500 μm to the FB, (g) observation of γ/γ boundary, (h) composition profile across the γ/γ grain boundary. (a), (c) and (e) are SEM back-scattered images, (b), (d) and (f) are TEM images.
Fig. 8. TEM-EDX analysis of the chemical composition of the ferrite and austenite phase in different regions of the 308 L and 309 L weld metals: (a) ferrite phase, (b) austenite phase.
Fig. 9. SEM observations of cracking in the 308 L weld metal on specimen S1: (a) surface morphology following 15% strain by SSRT, (b) surface morphology following 20% strain by SSRT, (c) an overall observation of fracture surface after SSRT test, (d) observation at higher magnification showing the cracking morphology, (e) schematic drawing showing the location of facture surface on specimen S1.
Fig. 10. SEM observations of cracking behavior of the 316 L-308 L similar metal weld on specimen S2: (a, b) surface morphology following 20% strain by SSRT, (c) an overall observation of fracture surface after SSRT test, (d) observation at higher magnification showing the cracking morphology, (e) schematic drawing showing the location of facture surface on specimen S2.
Fig. 11. SEM observations of cracking behavior of the 309 L-308 L similar metal weld on specimen S3: (a, b) SEM back-scattered electron images following 10% and 20% strains by SSRT, respectively, (c) an overall SEM observation of fracture surface after SSRT test, (d) SEM observations at higher magnification showing the cracking morphology, (e) schematic drawing showing the location of facture surface on specimen S3.
Fig. 12. SEM observations of cracking behavior of the SA508-309 L dissimilar metal weld with a tensile direction approximately parallel to the FB on specimen S4: (a, b) surface morphology following 10% and 15% strains by SSRT, respectively, (c) an overall observation of fracture surface after SSRT test, (d) observation at higher magnification showing the transgranular cracking morphology, (e) observation at higher magnification showing the intergranular cracking morphology, (f) schematic drawing showing the location of facture surface on specimen S4.
Fig. 13. SEM observations on the surface of the FB region of the SA508-309 L/308 L dissimilar metal weld with a tensile direction approximately perpendicular to the FB following 15% strain by SSRT on specimen S5: (a) the intergranular cracking morphology in the FB region, (b) the transgranular cracking morphology in the FB region, (c) necking in 308 L weld metal, (d) transgranular cracking morphology in 308 L weld metal.
Material | Initiation strain | SCC | Ductile fracture area percentage | |
---|---|---|---|---|
Intergranular area percentage | Transgranular area percentage | |||
309 L | 5%-10% | 18.3% | 56.4% | 25.3% |
HAZ of 316 L | 15%-20% | few | 6.2% | 93.0% |
308 L | 15%-20% | 0 | few | ~100% |
SA508 | - | 0 | 0 | 100% |
Table 2 The minimum strain for crack initiation and the area percentage of different failure modes on the fracture surface of various regions of the SA508-309 L/308 L-316 L weld joint following SSRT tests.
Material | Initiation strain | SCC | Ductile fracture area percentage | |
---|---|---|---|---|
Intergranular area percentage | Transgranular area percentage | |||
309 L | 5%-10% | 18.3% | 56.4% | 25.3% |
HAZ of 316 L | 15%-20% | few | 6.2% | 93.0% |
308 L | 15%-20% | 0 | few | ~100% |
SA508 | - | 0 | 0 | 100% |
|
[1] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
[4] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[7] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[10] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[11] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[12] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[13] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[14] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[15] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||