J. Mater. Sci. Technol. ›› 2022, Vol. 127: 133-143.DOI: 10.1016/j.jmst.2022.03.010
• Research Article • Previous Articles Next Articles
C. Xu1, W.J. Dai1, Y. Chen, Z.X. Qi, G. Zheng, Y.D. Cao, J.P. Zhang, C.C. Bu, G. Chen*()
Received:
2022-01-11
Revised:
2022-03-01
Accepted:
2022-03-01
Published:
2022-11-10
Online:
2022-11-10
Contact:
G. Chen
About author:
* E-mail address: gchen@njust.edu.cn (G. Chen)C. Xu, W.J. Dai, Y. Chen, Z.X. Qi, G. Zheng, Y.D. Cao, J.P. Zhang, C.C. Bu, G. Chen. Control of dislocation density maximizing precipitation strengthening effect[J]. J. Mater. Sci. Technol., 2022, 127: 133-143.
Samples | Heat treatment | Samples | Heat treatment |
---|---|---|---|
HR | as-hot rolled | HR + age | HR + 500 ℃/1 h |
WQ | HR + 900 ℃/30 min + WQ | WQ + age | WQ + 500 ℃/1 h |
0.1 ℃/s | HR + 900 ℃/30 min + 0.1 ℃/s | 0.1 ℃/s + age | 0.1 ℃/s + 500 ℃/1 h |
CR | HR + CR | CR + age | CR + 500 ℃/1 h |
Table 1. Heat treatment schedules of different samples.
Samples | Heat treatment | Samples | Heat treatment |
---|---|---|---|
HR | as-hot rolled | HR + age | HR + 500 ℃/1 h |
WQ | HR + 900 ℃/30 min + WQ | WQ + age | WQ + 500 ℃/1 h |
0.1 ℃/s | HR + 900 ℃/30 min + 0.1 ℃/s | 0.1 ℃/s + age | 0.1 ℃/s + 500 ℃/1 h |
CR | HR + CR | CR + age | CR + 500 ℃/1 h |
Fig. 3. IPF superimposed by grain boundary map of different heat treatments: (a) HR, (b) HR + age, (c) WQ, (d) WQ + age, (e) 0.1 ℃/s, (f) 0.1 ℃/s + age.
Empty Cell | HR | CR | WQ | 0.1 ℃/s |
---|---|---|---|---|
Dislocation density (m−2) | 1.07×1016 | 1.58×1016 | 7.92×1015 | 2.63×1015 |
Empty Cell | HR + age | CR + age | WQ + age | 0.1 ℃/s + age |
Dislocation density (m−2) | 8.37×1015 | 1.43×1016 | 3.79×1015 | 2.12×1015 |
Table 2. Dislocation density in different heat treatments.
Empty Cell | HR | CR | WQ | 0.1 ℃/s |
---|---|---|---|---|
Dislocation density (m−2) | 1.07×1016 | 1.58×1016 | 7.92×1015 | 2.63×1015 |
Empty Cell | HR + age | CR + age | WQ + age | 0.1 ℃/s + age |
Dislocation density (m−2) | 8.37×1015 | 1.43×1016 | 3.79×1015 | 2.12×1015 |
Fig. 4. TEM micrographs of different heat treatments: (a) HR, (b) HR with higher magnification, (c) WQ, (d) 0.1 ℃/s. The inset is the SAED pattern of the arrowed precipitates.
Empty Cell | HR | CR | WQ | 0.1 ℃/s |
---|---|---|---|---|
average size (nm) | 4.1 | 4.1 | 9.7 | 14.2 |
number density (m−2) | 2.7 × 1013 | 2.7 × 1013 | 6.0 × 1013 | 1.5 × 1015 |
Empty Cell | HR + age | CR + age | WQ + age | 0.1 ℃/s + age |
average size (nm) | 4.0 | 3.6 | 10.7 | 14.3 |
number density (m−2) | 1.0 × 1016 | 1.2 × 1016 | 4.4 × 1015 | 2.1 × 1015 |
Table 3. Average size and number density of nanoprecipitates in different heat treatments.
Empty Cell | HR | CR | WQ | 0.1 ℃/s |
---|---|---|---|---|
average size (nm) | 4.1 | 4.1 | 9.7 | 14.2 |
number density (m−2) | 2.7 × 1013 | 2.7 × 1013 | 6.0 × 1013 | 1.5 × 1015 |
Empty Cell | HR + age | CR + age | WQ + age | 0.1 ℃/s + age |
average size (nm) | 4.0 | 3.6 | 10.7 | 14.3 |
number density (m−2) | 1.0 × 1016 | 1.2 × 1016 | 4.4 × 1015 | 2.1 × 1015 |
Fig. 10. Calculated number of nuclei as a function of dislocation density: the blue, black and red lines are the number by homogeneous nucleation, heterogeneous nucleation and a sum of the two, respectively. The effect of dislocation density on precipitation can be roughly divided into three zones, where purple, red and green zones represent the no effect zone, negative effect zone, and positive effect zone, respectively. The theoretical numbers of nuclei of different heat treatments are shown by dashed lines.
Fig. 11. Schematic diagram showing the nucleation, growth and coarsening process of the Cu-rich precipitates: the black dots represent Cu in solution, green dots represent Cu nuclei, blue circles represent coherent bcc-Cu nanoprecipitates, red circles represent incoherent Cu nanoprecipitates.
[1] |
B. Hwang, C.G. Lee, S.J. Kim, Metall. Mater. Trans. A 42 (2011) 717-728.
DOI URL |
[2] |
S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363-373.
DOI URL |
[3] |
G.B. Olson, Science 277 (1997) 1237-1242.
DOI URL |
[4] |
M.E. Fine, S. Vaynman, D. Isheim, Y.-W.W. Chung, S.P. Bhat, C.H. Hahin, Metall. Mater. Trans. A 41 (2010) 3318-3325.
DOI URL |
[5] |
Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142-154.
DOI URL |
[6] |
C.H. Liebscher, V.R. Radmilović, U. Dahmen, N.Q. Vo, D.C. Dunand, M. Asta, G. Ghosh, Acta Mater. 92 (2015) 220-232.
DOI URL |
[7] |
J. Millán, S. Sandlöbes, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D. Ponge, D. Raabe, Acta Mater. 76 (2014) 94-105.
DOI URL |
[8] |
M. Thuvander, M. Andersson, K. Stiller, Ultramicroscopy 132 (2013) 265-270.
DOI PMID |
[9] |
R. Schnitzer, M. Schober, S. Zinner, H. Leitner, Acta Mater. 58 (2010) 3733-3741.
DOI URL |
[10] |
Y. Li, W. Yan, J.D. Cotton, G.J. Ryan, Y. Shen, W. Wang, Y. Shan, K. Yang, Mater. Des. 82 (2015) 56-63.
DOI URL |
[11] |
M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.-W.W. Chung, Acta Mater. 73 (2014) 56-74.
DOI URL |
[12] |
Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, M.W. Chen, Acta Mater. 61 (2013) 7726-7740.
DOI URL |
[13] |
Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, M.W. Chen, Acta Mater. 61 (2013) 2133-2147.
DOI URL |
[14] |
Z. Zhang, C.T. Liu, M.K. Miller, X.L. Wang, Y. Wen, T. Fujita, A. Hirata, M. Chen, G. Chen, B.A. Chin, Sci. Rep. 3 (2013) 1327.
DOI URL |
[15] |
Z.W. Zhang, C.T. Liu, X.L. Wang, M.K. Miller, D. Ma, G. Chen, J.R. Williams, B.A. Chin, Acta Mater. 60 (2012) 3034-3046.
DOI URL |
[16] |
Z.W. Zhang, C.T. Liu, X.-.L. Wang, K.C. Littrell, M.K. Miller, K. An, B.A. Chin, Phys. Rev. B 84 (2011) 174114.
DOI URL |
[17] |
Z. Wang, X. Mao, Z. Yang, X. Sun, Q. Yong, Z. Li, Y. Weng, Mater. Sci. Eng. A 529 (2011) 459-467.
DOI URL |
[18] |
X.L. Ma, S. Eswarappa Prameela, P. Yi, M. Fernandez, N.M. Krywopusk, L.J. Kecskes, T. Sano, M.L. Falk, T.P. Weihs, Acta Mater. 172 (2019) 185-199.
DOI |
[19] |
S.F. Medina, Acta Mater. 84 (2015) 202-207.
DOI URL |
[20] | D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Springer US, Boston, MA, 1992. |
[21] |
N. Maruyama, M. Sugiyama, T. Hara, H. Tamehiro, H.T. Naoki Maruyama, M. Sugiyama, T. Hara, Mater. Trans. JIM 40 (1999) 268-277.
DOI URL |
[22] |
A. Deschamps, M. Militzer, W.J. Poole, ISIJ Int. 41 (2001) 196-205.
DOI URL |
[23] |
A. Deschamps, M. Militzer, W.J. Poole, ISIJ Int. 43 (2003) 1826-1832.
DOI URL |
[24] |
S. Panwar, D.B. Goel, O.P. Pandey, Bull. Mater. Sci. 28 (2005) 259-265.
DOI URL |
[25] |
F. Theska, K. Nomoto, F. Godor, B. Oberwinkler, A. Stanojevic, S.P. Ringer, S. Primig, Acta Mater. 188 (2020) 492-503.
DOI URL |
[26] |
R.D.K. Misra, Z. Jia, R. O’Malley, S.J. Jansto, Mater. Sci. Eng. A 528 (2011) 8772-8780.
DOI URL |
[27] |
J.Y. Yoo, W.Y. Choo, T.W. Park, Y.W. Kim, ISIJ Int. 35 (1995) 1034-1040.
DOI URL |
[28] |
S.K. Ghosh, A. Haldar, P.P. Chattopadhyay, Mater. Charact. 59 (2008) 1227-1233.
DOI URL |
[29] |
D. Kalish, M. Cohen, Mater. Sci. Eng. 6 (1970) 156-166.
DOI URL |
[30] |
S.S. Xu, Y. Zhao, X. Tong, H. Guo, L. Chen, L.W. Sun, M. Peng, M.J. Chen, D. Chen, Y. Cui, G.A. Sun, S.M. Peng, Z.W. Zhang, J. Alloy. Compd. 712 (2017) 573-578.
DOI URL |
[31] |
A. Ghosh, B. Mishra, S. Das, S. Chatterjee, Metall. Mater. Trans. A 36 (2005) 703-713.
DOI URL |
[32] |
Y. Kobayashi, J. Takahashi, K. Kawakami, Acta Mater. 176 (2019) 145-154.
DOI |
[33] |
S.W. Thompson, Mater. Charact. 77 (2013) 89-98.
DOI URL |
[34] | A.S. Schulz-Beenken, J. Phys. IV 7 (1997) C5-359-C5-366. |
[35] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544 (2017) 460-464.
DOI URL |
[36] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu, Acta Mater. 61 (2013) 5996-6005.
DOI URL |
[37] |
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54 (2006) 1279-1288.
DOI URL |
[38] |
G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Mater. Sci. Eng. A 527 (2010) 2759-2763.
DOI URL |
[39] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.
DOI URL |
[40] |
P. Sahu, M. De, S. Kajiwara, Mater. Sci. Eng. A 333 (2002) 10-23.
DOI URL |
[41] |
X.W. Lei, D.Y. Li, X.H. Zhang, T.X. Liang, Metall. Mater. Trans. A 50 (2019) 4445-4461.
DOI URL |
[42] | J.C. Cao, X.L. Zhou, L. Deng, Q.L. Yong, X.J. Sun, Q.Y. Liu, Adv. Mater. Res. 476-478 (2012) 281-285. |
[43] |
P.R. Howell, R.A. Ricks, R.W.K. Honeycombe, J. Mater. Sci. 15 (1980) 376-380.
DOI URL |
[44] |
S.W. Thompson, G. Krauss, C.C. Tseng, J. Mater. Sci. Lett. 17 (1998) 2075-2078.
DOI URL |
[45] | D.W. Smith, Inorganic Substances: A Prelude to the Study of Descriptive Inor-ganic Chemistry, Cambridge University Press, Cambridge, 1990. |
[46] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[47] |
R. Prakash Kolli, D.N. Seidman, Acta Mater. 56 (2008) 2073-2088.
DOI URL |
[48] |
R. Monzen, M. Iguchi, M.L.L. Jenkins, Philos. Mag. Lett. 80) (2000) 137-148.
DOI URL |
[49] |
J.G. Jung, M. Jung, S.M. Lee, E. Shin, H.C. Shin, Y.K. Lee, J. Alloy. Compd. 553 (2013) 299-307.
DOI URL |
[50] |
S.M. He, N.H. Van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F.D. Tichelaar, S. Van Der Zwaag, Phys. Rev. B 82 (2010) 1-14.
DOI URL |
[51] |
A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57 (2009) 5093-5106.
DOI URL |
[52] |
O. Kwon, A.J.J. DeArdo, Acta Metall. Mater. 39 (1991) 529-538.
DOI URL |
[53] |
W.M. Rainforth, M.P. Black, R.L. Higginson, E.J. Palmiere, C.M. Sellars, I. Prabst, P. Warbichler, F. Hofer, Acta Mater. 50 (2002) 735-747.
DOI URL |
[54] |
B. Dutta, E.J. Palmiere, C.M. Sellars, Acta Mater. 49 (2001) 785-794.
DOI URL |
[55] |
S.G. Hong, K.B. Kang, C.G. Park, Scr. Mater. 46 (2002) 163-168.
DOI URL |
[56] |
K.C. Russell, Adv. Colloid Interface Sci. 13 (1980) 205-318.
DOI URL |
[57] |
R. Monzen, K. Kita, Philos. Mag. Lett. 82 (2002) 373-382.
DOI URL |
[58] |
R. Monzen, K. Takada, C. Watanabe, ISIJ Int. 44 (2004) 442-444.
DOI URL |
[59] |
W. Song, S. Zhao, Phys. Chem. Chem. Phys. 16 (2014) 7222.
DOI URL |
[60] |
A.M. Garrett, C.P. Race, Comput. Mater. Sci. 188 (2021) 110149.
DOI URL |
[61] |
M. Ludwig, D. Farkas, D. Pedraza, S. Schmauder, Model. Simul. Mater. Sci. Eng. 6 (1998) 19-28.
DOI URL |
[62] | A. Seko, S.R. Nishitani, I. Tanaka, H. Adachi, E.F. Fujita, Calphad Comput. Cou-pling Phase Diagram. Thermochem. 28 (2004) 173-176. |
[63] |
C. Zhang, M. Enomoto, Acta Mater. 54 (2006) 4183-4191.
DOI URL |
[64] | R. Wagner, R. Kampmann, P.W. Voorhees, in: Phase Transform. Mater, Wi-ley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, pp. 309-407. |
[65] |
G. Salje, M. Feller-Kniepmeier, J. Appl. Phys. 48 (1977) 1833-1839.
DOI URL |
[66] |
D.M. Barnett, Scr. Metall. 5 (1971) 261-266.
DOI URL |
[67] |
B. Dutta, E. Valdes, C.M. Sellars, Acta Metall. Mater. 40 (1992) 653-662.
DOI URL |
[68] |
D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841-849.
DOI URL |
[69] | R.P. Kolli, D.N. Seidman, Microsc. Microanal. 13 (2007) 272-284. |
[70] | M.K. Miller, P. Pareige, MRS Proc 650 (2000) R6.1.1-R6.1.12. |
[71] |
P.J. Pareige, K.F. Russell, M.K. Miller, Appl. Surf. Sci. 94-95 (1996) 362-369.
DOI URL |
[72] |
J. Robson, Acta Mater. 52 (2004) 4669-4676.
DOI URL |
[73] |
J.H. Yao, K.R. Elder, H. Guo, M. Grant, Phys. Rev. B 47 (1993) 14110-14125.
PMID |
[74] |
Y. Le Bouar, Acta Mater. 49 (2001) 2661-2669.
DOI URL |
[1] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[2] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[3] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[4] | Mirza Zahid Hussain, Jiangtao Xiong, Jinglong Li, Farah Siddique, Lin Jie Zhang, Yajie Du, Xian Rong Zhou. Effect of Ti-Hf-Zr-Cu-Ni high entropy alloy addition on laser beam welded joint of Ti2AlNb based intermetallic alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 214-226. |
[5] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[6] | Wenwei Gao, Hai Wang, Konrad Koenigsmann, Shuyuan Zhang, Ling Ren, Ke Yang. Fabrication of ultrafine-grained Ti-15Zr-xCu alloys through martensite decompositions under thermomechanical coupling conditions [J]. J. Mater. Sci. Technol., 2022, 127(0): 19-28. |
[7] | X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li. A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering [J]. J. Mater. Sci. Technol., 2022, 113(0): 82-89. |
[8] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[9] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[10] | Laishan Yang, Zhibo Dong, Lei Wang, Nikolas Provatas. Improved multi-order parameter and multi-component model of polycrystalline solidification [J]. J. Mater. Sci. Technol., 2022, 101(0): 217-225. |
[11] | Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations [J]. J. Mater. Sci. Technol., 2021, 86(0): 192-203. |
[12] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
[13] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[14] | Zhipeng Long, Qiuyue Jiang, Jiantao Wang, Long Hou, Xing Yu, Yves Fautrelle, Zhongming Ren, Xi Li. Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 165-170. |
[15] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||