J. Mater. Sci. Technol. ›› 2022, Vol. 127: 124-132.DOI: 10.1016/j.jmst.2022.04.011
• Research Article • Previous Articles Next Articles
Lei Hua,b, Lin Lia, Yuyang Zhanga, Xiaohong Tand, Hao Yangc,*(), Xiaoming Lind,*(
), Yexiang Tongb,*(
)
Received:
2022-01-06
Revised:
2022-03-22
Accepted:
2022-04-05
Published:
2022-11-10
Online:
2022-11-10
Contact:
Hao Yang,Xiaoming Lin,Yexiang Tong
About author:
chedhx@mail.sysu.edu.cn (Y. Tong)Lei Hu, Lin Li, Yuyang Zhang, Xiaohong Tan, Hao Yang, Xiaoming Lin, Yexiang Tong. Construction of cobalt vacancies in cobalt telluride to induce fast ionic/electronic diffusion kinetics for lithium-ion half/full batteries[J]. J. Mater. Sci. Technol., 2022, 127: 124-132.
Fig. 1. (a) Schematic representation of the synthesis of Cu-Co1-xTe@NC HNBs. (b-d) SEM and TEM images of Cu-Co1-xTe@NC HNBs. (e, f) HRTEM images and (g) SAED pattern of Cu-Co1-xTe@NC HNBs. (h-j) Elemental mappings showing the distribution of individual elements (Te, Cu and Co) present in Cu-Co1-xTe@NC HNBs.
Fig. 2. (a) Schematic diagram of copper-doped Co1-xTe structure. (b, c) XRD patterns of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs. (d) Co 2p spectra, (e) N 1 s spectra and (f) Te 3d spectra of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs. (g) Nitrogen adsorption and desorption curve of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs.
Fig. 3. (a) CV curves, (b) charge-discharge profiles, (c) rate performance and (d) cycling stability of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs electrodes.
Fig. 4. (a) CV curves of the Cu-Co1-xTe@NC HNBs at various scan rates. (b) log(i) vs. log(v) plots at different cathodic/anodic peaks. (c) Capacitive and diffusion controlled capacities contribution ratio at various scan rates. (d) Capacitive controlled contribution at 0.8 mV s?1 of Cu-Co1-xTe@NC HNBs. (e) Nyquist plots of two electrodes before and after cycling (the inset is the proposed equivalent circuit). (f) Z' vs. ω?1/2 plots of two electrodes before and after the cyclic performance. (g) GITT curves of Cu-Co1-xTe@NC HNBs electrode. (h, i) Calculated lithium-ion diffusion coefficient at different lithiation/delithiation states of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs.
Fig. 5. (a) Energy profile of lithium-ion route through CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs. (b) Differences of electron charge density for CoTe@NC HNBs (left image) and Cu-Co1-xTe@NC HNBs (right image) electrodes. (c) DOS curves of CoTe@NC HNBs and Cu-Co1-xTe@NC HNBs, and their corresponding p-bands. (d) Schematic illustration of Cu-Co1-xTe@NC HNBs electrode with bicontinuous electron/ion transfer routes.
Fig. 6. (a) Schematic illustration of the full cell with the LCO cathode and Cu-Co1-xTe@NC HNBs anode. (b) Cyclic stability of LCO cathode. (c) Rate performance of the LCO//Cu-Co1-xTe@NC HNBs full cell device. (d) A Ragone plot comparing the ED and PD of LCO//Cu-Co1-xTe@NC HNBs full cell with the recently reported cobalt-based full LIBs.
[1] |
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, P. Anderson, Nature 575 (2019) 75-86.
DOI URL |
[2] |
Y. Sun, L. Wang, Y. Li, Y. Li, H.R. Lee, A. Pei, X. He, Y. Cui, Joule 3 (2019) 1080-1093.
DOI URL |
[3] |
N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Nat. Commun. 8 (2017) 812.
DOI URL |
[4] |
J. Zhou, Q. Yang, Q. Xie, H. Ou, X. Lin, A. Zeb, L. Hu, Y. Wu, G. Ma, J. Mater. Sci. Technol. 96 (2022) 262-284.
DOI URL |
[5] |
S. Li, J. Lin, W. Xiong, X. Guo, D. Wu, Q. Zhang, Q.L. Zhu, L. Zhang, Coord. Chem. Rev. 438 (2021) 213872.
DOI URL |
[6] |
P. Ge, C. Zhang, H. Hou, B. Wu, L. Zhou, S. Li, T. Wu, J. Hu, L. Mai, X. Ji, Nano Energy 48 (2018) 617-629.
DOI URL |
[7] |
M. Mao, X. Ji, S. Hou, T. Gao, F. Wang, L. Chen, X. Fan, J. Chen, J. Ma, C. Wang, Chem. Mater. 31 (2019) 3183-3191.
DOI URL |
[8] |
G. Zhang, K. Liu, J. Zhou, J. Mater. Chem. A 6 (2018) 6335-6343.
DOI URL |
[9] |
Z. Yu, S. Jiao, J. Tu, Y. Luo, W.L. Song, H. Jiao, M. Wang, H. Chen, D. Fang, ACS Nano 14 (2020) 3469-3476.
DOI URL |
[10] |
Y. Ding, W. Wang, M. Bi, J. Guo, Z. Fang, Electrochim. Acta 313 (2019) 331.
DOI URL |
[11] |
B. Zhang, Y. Zhang, J. Li, J. Liu, X. Huo, F. Kang, J. Mater. Chem. A 8 (2020) 5535-5545.
DOI URL |
[12] |
M. Manikandan, K. Subramani, S. Dhanuskodi, M. Sathish, Energy Fuels 35 (2021) 12527.
DOI URL |
[13] |
S. Yang, G.D. Park, Y.C. Kang, Appl. Surf. Sci. 529 (2020) 147140.
DOI URL |
[14] |
H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song, W. Liu, Y. Hao, J. Wang, C. Xie, J. Zhang, X. Li, Adv. Mater. 33 (2021) 2102471.
DOI URL |
[15] |
X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu, Z. Qiu, D. Wang, C. Yang, Q. Zeng, Z. Peng, S. Guo, Adv. Mater. 33 (2021) 2100272.
DOI URL |
[16] |
D. Yuan, Y. Dou, Y. Tian, D. Adekoya, L. Xu, S. Zhang, Angew. Chem. Int. Ed. 60 (2021) 18830.
DOI URL |
[17] |
Y. Wu, Z. Wei, R. Xu, Y. Gong, L. Gu, J. Ma, Y. Yu, Nano Res. 12 (2019) 2211-2217.
DOI URL |
[18] |
S. Wen, J. Zhao, Y. Zhu, J. Mao, H. Wang, J. Xu, J. Alloy. Compd. 837 (2020) 155536.
DOI URL |
[19] |
Z. Xue, X. Li, Q. Liu, M. Cai, K. Liu, M. Liu, Z. Ke, X. Liu, G. Li, Adv. Mater. 31 (2019) 1900430.
DOI URL |
[20] |
Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H.P. Wang, Y. Fan, Z.W. Wei, Z. Zhang, Z. Ke, G. Li, C.Y. Su, Adv. Energy Mater. 8 (2018) 1801564.
DOI URL |
[21] |
Y. Huang, L. Hu, R. Liu, Y. Hu, T. Xiong, W. Qiu, M.S. Balogun, A. Pan, Y. Tong, Appl. Catal. B Environ. 251 (2019) 181-194.
DOI URL |
[22] |
L. Hu, Y. Hu, R. Liu, Y. Mao, M.S. Balogun, Y. Tong, Int. J. Hydrog. Energy 44 (2019) 11402-11410.
DOI URL |
[23] |
L. Hu, T. Xiong, R. Liu, Y. Hu, Y. Mao, M.S. Balogun, Y. Tong, Chem. Eur. J. 25 (2019) 6575-6583.
DOI URL |
[24] |
G. Yang, S. Zhang, S. Weng, X. Li, X. Wang, Z. Wang, L. Chen, Nano Lett. 21 (2021) 5316-5323.
DOI URL |
[25] | J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, D. Wu, Energy Storage Mater. 41 (2021) 697-702. |
[26] |
S. Zhang, M. Wang, Z. Zhou, Y. Tang, Adv. Funct. Mater. 27 (2017) 1703035.
DOI URL |
[27] |
Y. Chu, L. Guo, B. Xi, Z. Feng, F. Wu, Y. Lin, J. Liu, D. Sun, J. Feng, Y. Qian, S. Xiong, Adv. Mater. 30 (2018) 1704244.
DOI URL |
[28] |
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9 (2010) 146-151.
DOI PMID |
[29] |
X. Yang, Y.B. Tang, X. Huang, H.T. Xue, W.P. Kang, W.Y. Li, T.W. Ng, C.S. Lee, J. Power Sources 284 (2015) 109-114.
DOI URL |
[30] |
B. Kurc, M. Pigłowska, J. Power Sources 485 (2021) 229323.
DOI URL |
[31] |
J. Lin, C. Zeng, J. Xu, A. Zeb, X. Lin, L. Hu, K. Li, X. Xu, Chem. Eng. J. 425 (2021) 130661.
DOI URL |
[32] |
K. Xu, X. Liu, J. Liang, J. Cai, K. Zhang, Y. Lu, X. Wu, M. Zhu, Y. Liu, Y. Zhu, G. Wang, Y. Qian, ACS Energy Lett. 3 (2018) 420-427.
DOI URL |
[33] | Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M.S. Balo-gun, Energy Storage Mater. 25 (2020) 41-51. |
[34] |
T. Meng, B. Li, Q. Wang, J. Hao, B. Huang, F.L. Gu, H. Xu, P. Liu, Y. Tong, ACS Nano 14 (2020) 7066-7076.
DOI PMID |
[35] |
C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang, Y. Gogotsi, Angew. Chem. Int. Ed. 57 (2018) 1846-1850.
DOI PMID |
[36] |
J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan, L. Chen, S. Niu, J. Cai, D. Sun, Y. Zhu, J. Du, G. Wang, Y. Qian, Joule 2 (2018) 2681-2693.
DOI URL |
[37] |
V.S. Avvaru, I.J. Fernandez, W. Feng, S.J. Hinder, M.C. Rodríguez, V. Etacheri, Carbon 171 (2021) 869-881.
DOI URL |
[38] |
J. Jiang, C. Ma, T. Ma, J. Zhu, J. Liu, G. Yang, Y. Yang, J. Alloy. Compd. 794 (2019) 385-395.
DOI URL |
[39] |
N. Li, L. Sun, K. Wang, S. Xu, J. Zhang, X. Guo, X. Liu, J. Energy Chem. 51 (2020) 62-71.
DOI URL |
[40] |
J. Chen, H. Zhou, H. Chen, B. An, L. Deng, Y. Li, L. Sun, X. Ren, P. Zhang, J. Electrochem. Soc. 166 (2019) A3820-A3829.
DOI URL |
[41] |
K. Guo, B. Xi, R. Wei, H. Li, J. Feng, S. Xiong, Adv. Energy Mater. 10 (2020) 1902913.
DOI URL |
[42] |
Z. Ding, X. Qin, C. You, M. Wu, Y. He, F. Kang, B. Li, Electrochim. Acta 270 (2018) 192-204.
DOI URL |
[43] | M.S. Balogun, H. Yang, Y. Luo, W. Qiu, Y. Huang, Z.Q. Liu, Y. Tong, Energy Envi-ron. Sci. 11 (2018) 1859-1869. |
[1] | Xinlu Zhang, Lu Han, Junfeng Li, Ting Lu, Jinliang Li, Guang Zhu, Likun Pan. A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage [J]. J. Mater. Sci. Technol., 2022, 97(0): 156-164. |
[2] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[3] | Yongxiao Wang, Xinwu Ma, Guoqun Zhao, Xiao Xu, Xiaoxue Chen, Cunsheng Zhang. Microstructure evolution of spray deposited and as-cast 2195 Al-Li alloys during homogenization [J]. J. Mater. Sci. Technol., 2021, 82(0): 161-178. |
[4] | Lei Xiao, Guangyu Yang, Yang Liu, Shifeng Luo, Wanqi Jie. Microstructure evolution, mechanical properties and diffusion behaviour of Mg-6Zn-2Gd-0.5Zr alloy during homogenization [J]. J. Mater. Sci. Technol., 2018, 34(12): 2246-2255. |
[5] | Zhongping He, Yanlin He, Yi Gao, Lin Li, Shuigen Huang, Omer Van der Biest. Computer Simulation of Fe-Al-Si System Diffusion Couples [J]. J Mater Sci Technol, 2011, 27(8): 729-734. |
[6] | G.X.Wang, Steve Bewlay, L.Yang, J.Z.Wang, Y.Chen, Jane Yao, H.K.Liu, S.X.Dou. Nanostructured Electrode Materials for Rechargeable Lithium-ion Battery Applications [J]. J Mater Sci Technol, 2005, 21(Supl.1): 17-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||