J. Mater. Sci. Technol. ›› 2022, Vol. 115: 166-176.DOI: 10.1016/j.jmst.2021.11.016
• Research Article • Previous Articles Next Articles
Guanqiang Wanga,c, Mingsong Chena,b,*(), Yongcheng Lina,b,c,*(
), Hongbin Lia,d, Yuqiang Jianga,c, Yanyong Maa,c, Chengxu Penga,c, Jinliang Caia,c, Quan Chena,c
Received:
2021-05-17
Revised:
2021-10-19
Accepted:
2021-11-07
Published:
2022-07-10
Online:
2022-01-24
Contact:
Mingsong Chen,Yongcheng Lin
About author:
yclin@csu.edu.cn (Y. Lin).Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing[J]. J. Mater. Sci. Technol., 2022, 115: 166-176.
Fig. 3. Deformed microstructure after aging: (a) SEM image and distribution of adjacent δ phases distance of sample aged 12 h [47]; (b) local misorientation (LM) map of sample aged 12 h; (c) δ phase contents [47], and (d) LM angle distributions, of samples aged 3, 6, 9 and 12 h.
Fig. 4. Relationships between recrystallization and annealing parameters: (a) recrystallization fraction and RT time with heat treatment parameters; (b) the time parameters of recrystallization behavior during RT at 980 °C and 990 °C.
Fig. 5. Schematic illustration of nucleation incubation time distribution during RT. (Full curve and dotted curve represent nucleation incubation time distribution in primary RT stage and subsequent RT stage, respectively.).
Fig. 6. LM maps of samples heated with schemes of: (a) 900 °C × 9 h + 990 °C × 20 min [47]; (b) 900 °C × 12 h+ 990 °C × 40 min [47]. (c) KAM value distribution of samples with the schemes of 900 °C × 9 h + 990 °C × 20 min and 900 °C × 12 h + 990 °C × 40 min. (d) Comparison of the number of newborn recrystallized grain inside samples with schemes of 900 °C × 9 h+990 °C × 20 min and 900 °C × 12 h + 990 °C× 40 min.
Fig. 7. EBSD orientation image microscopy (OIM) maps of samples heated with schemes of: (a) 900 °C × 9 h + 990 °C × 40 min [47]; (b) 900 °C× 12 h + 990 °C × 60 min [47]. (c) Grain size distributions and statistical analysis of (a) and (b).
Fig. 8. TEM images of: (a) PPN around grain boundary; (b) PILN; (c) PPN in intragranular. (d) High-resolution TEM (HRTEM) image of area marked by red circle in (c).
Fig. 10. Schematic graph of calculation of JN: (a) KAM and (b) SEM map of sample aged 3 h; (c) JN value of samples with different AT time. (d) Distribution of dδ, rc and feasible domain of each recrystallization nucleation size for sample aged 3 h.
[1] |
Z.C. Cordero, E.L. Huskins, M. Park, S. Livers, M. Frary, B.E. Schuster, C.A. Schuh, Metall. Mater. Trans. A 45 (2014) 3609-3618.
DOI URL |
[2] |
H.Z. Yu, S.R. Cross, C.A. Schuh, J. Mater. Sci. 52 (2017) 4288-4298.
DOI URL |
[3] |
J. Li, Y. Wu, Y. Liu, C. Li, Z. Ma, L. Yu, H. Li, C. Liu, Q. Guo, Mater. Charact. 169 (2020) 110547.
DOI URL |
[4] |
Z.C. Cordero, C.A. Schuh, Acta Mater 82 (2015) 123-136.
DOI URL |
[5] |
M. Yang, Z. Zhang, Z. Han, J. Du, J. Huang, Intermetallics 126 (2020) 106930.
DOI URL |
[6] |
S.A. Humphry-Baker, C.A. Schuh, Acta Mater 75 (2014) 167-179.
DOI URL |
[7] |
W. Ma, S. Liu, X. Zhang, B. Chen, F. Wang, X. Zhang, M. Ma, R. Liu, Mater. Sci. Eng. A 792 (2020) 139812.
DOI URL |
[8] |
S. Liu, W. Liu, J. Liu, J. Liu, L. Zhang, Y. Tang, L. Zhang, L. Wang, Mater. Sci. Eng. A 801 (2021) 140434.
DOI URL |
[9] |
J.A. Bahena, N.M. Heckman, C.M. Barr, K. Hattar, B.L. Boyce, A.M. Hodge, Acta Mater 195 (2020) 132-140.
DOI URL |
[10] |
J. Zhang, D. Raabe, C.C. Tasan, Acta Mater 141 (2017) 374-387.
DOI URL |
[11] | Y.Q. Jiang, Y.C. Lin, C.Y. Zhao, M.S. Chen, D.G. He, Adv. Eng. Mater. 22 (2020) 20 0 0447. |
[12] |
C. Schäfer, V. Mohles, G. Gottstein, Acta Mater 59 (2011) 6574-6587.
DOI URL |
[13] |
K. Huang, K. Zhang, K. Marthinsen, R.E. Logé, Acta Mater 141 (2017) 360-373.
DOI URL |
[14] | H. Miura, H. Tsukawaki, T. Sakai, J.J. Jonas, Acta Mater 56 (2008) 4 944-4 952. |
[15] |
Z.J. Chen, Y.C. Lin, D.G. He, Y.M. Lou, M.S. Chen, Mater. Sci. Eng. A 827 (2021) 142062.
DOI URL |
[16] |
F.J. Humphreys, Acta Mater 45 (1997) 5031-5039.
DOI URL |
[17] |
F. Theska, K. Nomoto, F. Godor, B. Oberwinkler, A. Stanojevic, S.P. Ringer, S. Primig, Acta Mater 188 (2020) 492-503.
DOI URL |
[18] |
J.D. L’Ecuyer, G. L’Espérance, Acta Metall. Mater. 37 (1989) 1023-1031.
DOI URL |
[19] |
H. Cheng, Y.C. Lin, D.G. He, Y.L. Qiu, J.C. Zhu, M.S. Chen, Mater. Des. 197 (2021) 109256.
DOI URL |
[20] |
R. Chen, C. Tan, X. Yu, S. Hui, W. Ye, Y. Lee, Mater. Charact. 153 (2019) 24-33.
DOI URL |
[21] |
G. Liu, S. Ji, Mater. Charact. 150 (2019) 174-183.
DOI URL |
[22] |
O.B. Bembalge, S.K. Panigrahi, Metall. Mater. Trans. A 50 (2019) 4288-4306.
DOI URL |
[23] |
E.Z. Silva, H. Kestler, H.R.Z. Sandim, Int. J. Refract. Met. Hard Mater. 73 (2018) 74-78.
DOI URL |
[24] |
J.D. Robson, D.T. Henry, B. Davis, Acta Mater 57 (2009) 2739-2747.
DOI URL |
[25] |
G.Z. Quan, J. Pan, X. Wang, T. Wang, L. Zhang, Z.H. Zhang, Mater. Sci. Eng. A 679 (2017) 358-371.
DOI URL |
[26] |
H. Mirzadeh, M.H. Parsa, J. Alloy. Compd. 614 (2014) 56-59.
DOI URL |
[27] |
M. Rafiei, H. Mirzadeh, M. Malekan, J. Alloy. Compd. 795 (2019) 207-212.
DOI URL |
[28] |
K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, H.M. Zbib, Int. J. Plast. 22 (2006) 713-723.
DOI URL |
[29] |
W. Li, J. Ma, H. Kou, J. Shao, X. Zhang, Y. Deng, Y. Tao, D. Fang, Int. J. Plast. 116 (2019) 143-158.
DOI URL |
[30] |
L. Zhou, A. Mehta, B. Mcwilliams, K. Cho, Y.H. Sohn, J. Mater. Sci. Technol. 35 (2019) 1153-1164.
DOI |
[31] |
M. Charpagne, T. Billot, J. Franchet, N. Bozzolo, J. Alloy. Compd. 688 (2016) 685-694.
DOI URL |
[32] |
D.M. Collins, B.D. Conduit, H.J. Stone, M.C. Hardy, G.J. Conduit, R.J. Mitchell, Acta Mater 61 (2013) 3378-3391.
DOI URL |
[33] |
E.V. Pereloma, P. Mannan, G. Casillas, A.A. Saleh, Mater. Charact. 125 (2017) 94-98.
DOI URL |
[34] |
G.R. Ebrahimi, A. Momeni, H.R. Ezatpour, M. Jahazi, P. Bocher, Mater. Sci. Eng. A 744 (2019) 376-385.
DOI URL |
[35] |
A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, X. Wang, Mater. Sci. Eng. A 615 (2014) 51-60.
DOI URL |
[36] |
M. Rafiei, H. Mirzadeh, M. Malekan, J. Alloy. Compd. 795 (2019) 207-212.
DOI URL |
[37] |
D.G. He, Y.C. Lin, M. Chen, L. Li, J. Alloy. Compd. 690 (2017) 971-978.
DOI URL |
[38] |
X. Wang, Z. Huang, B. Cai, N. Zhou, O. Magdysyuk, Y. Gao, S. Srivatsa, L. Tan, L. Jiang, Acta Mater 168 (2019) 287-298.
DOI |
[39] |
D. Jia, W. Sun, D. Xu, F. Liu, J. Mater. Sci. Technol. 35 (2019) 1851-1859.
DOI |
[40] |
X. Zhu, C. Gong, Y. Jia, R. Wang, C. Zhang, Y. Fu, S. Tu, X. Zhang, J. Mater. Sci. Technol. 35 (2019) 1607-1617.
DOI URL |
[41] |
Q. Zhu, C. Wang, K. Yang, G. Chen, H. Qin, P. Zhang, J. Mater. Sci. Technol. 40 (2020) 146-157.
DOI URL |
[42] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H.B. Li, W.Q. Yuan, Mater. Charact. 141 (2018) 212-222.
DOI URL |
[43] |
M.S. Chen, G.Q. Wang, H.B. Li, Y.C. Lin, Z.H. Zou, Y.Y. Ma, Adv. Eng. Mater. 21 (2019) 1900558.
DOI URL |
[44] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H. Li, G. Wang, Y. Ma, Mater. Charact. 151 (2019) 445-456.
DOI URL |
[45] | H.Y. Zhang, S.H. Zhang, Z.X. Li, M. Cheng, P. I. Mech. Eng. B-J. Eng. 224 (2010) 103-110. |
[46] |
M.S. Chen, Z.H. Zou, Y.C. Lin, H. Li, G.Q. Wang, J. Mater. Sci. Technol. 35 (2019) 1403-1411.
DOI URL |
[47] |
G.Q. Wang, M.S. Chen, H.B. Li, Y.C. Lin, W.D. Zeng, Y.Y. Ma, J. Mater. Sci. Technol. 77 (2021) 47-57.
DOI URL |
[48] |
Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C. Zhao, X. Ma, Z. Long, Mater. Des. 97 (2016) 13-24.
DOI URL |
[49] |
M.S. Chen, G.Q. Wang, H.B. Li, Y.C. Lin, Z.H. Zou, Y.Y. Ma, Appl. Phys. A 125 (2019) 447.
DOI URL |
[50] |
P.A. Beck, P.R. Sperry, J. Appl. Phys. 21 (1950) 150-152.
DOI URL |
[51] |
H.S. Zurob, Y. Brechet, J. Dunlop, Acta Mater 54 (2006) 3983-3990.
DOI URL |
[52] |
A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado, J. Mater. Process. Tech. 177 (2006) 469-472.
DOI URL |
[53] | H.J. Frost, M.F. Ashby, Deformation-mechanism maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982. |
[54] |
Y.C. Lin, Y.X. Liu, M.S. Chen, M.H. Huang, X. Ma, Z.L. Long, Mater. Des. 99 (2016) 107-114.
DOI URL |
[55] |
H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids. 47 (1999) 1239-1263.
DOI URL |
[56] |
H. Gao, Y. Huang, Scr. Mater. 48 (2003) 113-118.
DOI URL |
[57] |
Y. Guo, T.B. Britton, A.J. Wilkinson, Acta Mater 76 (2014) 1-12.
DOI URL |
[58] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
[59] |
S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloy. Compd. 709 (2017) 394-409.
DOI URL |
[60] |
A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, N. Bozzolo, Acta Mater 174 (2019) 406-417.
DOI URL |
[61] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenom-ena, Elsevier, 2012. |
[62] |
W. Pantleon, N. Hansen, Acta Mater 49 (2001) 1479-1493.
DOI URL |
[63] |
S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.Appa Rao, U. Borah, Mater. Charact. 146 (2018) 217-236.
DOI URL |
[64] |
F. Chen, H. Wang, H. Zhu, Z. Cui, Metall. Mater. Trans. A. 8 (2019) 145-158.
DOI URL |
[65] |
S. Birosca, G. Liu, R. Ding, J. Jiang, T. Simm, C. Deen, M. Whittaker, Int. J. Plast. 118 (2019) 252-268.
DOI URL |
[66] | B. Radhakrishnan, G.B. Sarma, T. Zacharia, Acta Mater 46 (1998) 4 415-4 433. |
[67] |
B. Hutchinson, S. Jonsson, L. Ryde, Scr. Metall. 23 (1989) 671-676.
DOI URL |
[68] |
D.J. Jensen, Acta Metall. Mater. 43 (1995) 4117-4129.
DOI URL |
[69] |
D.Y. Cai, W. Zhang, P. Nie, W. Liu, M. Yao, Mater. Charact. 58 (2007) 220-225.
DOI URL |
[70] |
I. Andersen, Ø. Grong, N. Ryum, Acta Metall. Mater. 43 (1995) 2689-2700.
DOI URL |
[71] |
I. Andersen, Ø. Grong, Acta Metall. Mater. 43 (1995) 2673-2688.
DOI URL |
[72] |
H. Zhang, C. Li, Q. Guo, Z. Ma, Y. Huang, H. Li, Y. Liu, Mater. Charact. 133 (2017) 138-145.
DOI URL |
[73] |
G.Q. Wang, H.B. Li, M.S. Chen, Y.C. Lin, W.D. Zeng, Y.Y. Ma, Q. Chen, Y.Q. Jiang, Mater. Charact. 176 (2021) 111130.
DOI URL |
[1] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[2] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[3] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[4] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[5] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[6] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[7] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[8] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[9] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[10] | X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li. A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering [J]. J. Mater. Sci. Technol., 2022, 113(0): 82-89. |
[11] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[12] | Laishan Yang, Zhibo Dong, Lei Wang, Nikolas Provatas. Improved multi-order parameter and multi-component model of polycrystalline solidification [J]. J. Mater. Sci. Technol., 2022, 101(0): 217-225. |
[13] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[14] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[15] | Kai Chen, Lihua Zhan, Wenfang Yu. Rapidly modifying microstructure and mechanical properties of AA7150 Al alloy processed with electropulsing treatment [J]. J. Mater. Sci. Technol., 2021, 95(0): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||