J. Mater. Sci. Technol. ›› 2022, Vol. 115: 177-188.DOI: 10.1016/j.jmst.2021.11.027
• Research Article • Previous Articles Next Articles
Hyo Ju Bae, Kwang Kyu Ko, Muhammad Ishtiaq, Jung Gi Kim, Hyokyung Sung(), Jae Bok Seol(
)
Received:
2021-06-12
Revised:
2021-10-13
Accepted:
2021-11-01
Published:
2022-07-10
Online:
2022-01-26
Contact:
Hyokyung Sung,Jae Bok Seol
About author:
jb.seol@gnu.ac.kr (J.B. Seol).1These authors contributed equally to this work.
Hyo Ju Bae, Kwang Kyu Ko, Muhammad Ishtiaq, Jung Gi Kim, Hyokyung Sung, Jae Bok Seol. On the stacking fault forming probability and stacking fault energy in carbon-doped 17 at% Mn steels via transmission electron microscopy and atom probe tomography[J]. J. Mater. Sci. Technol., 2022, 115: 177-188.
Steels | Mn | C | Si | Fe |
---|---|---|---|---|
Fe-17Mn | 17.03 | 0.083 | 0.024 | Bal. |
17Mn-0.4C | 16.98 | 0.4 | 0.022 | Bal. |
17Mn-1.1C | 16.95 | 1.1 | 0.024 | Bal. |
17Mn-1.56C | 16.93 | 1.56 | 0.029 | Bal. |
Table 1. Composition of the current 17Mn steels in at%, measured by inductivity-coupled argon plasma atomic-emission spectrometry. Each alloy system was examined by three times.
Steels | Mn | C | Si | Fe |
---|---|---|---|---|
Fe-17Mn | 17.03 | 0.083 | 0.024 | Bal. |
17Mn-0.4C | 16.98 | 0.4 | 0.022 | Bal. |
17Mn-1.1C | 16.95 | 1.1 | 0.024 | Bal. |
17Mn-1.56C | 16.93 | 1.56 | 0.029 | Bal. |
Fig. 1. Determination of intrinsic stacking-fault forming probability via electron diffraction shift method used in this study: (a) A sketch of typical selected area electron diffraction (SAED) pattern including face-centered cubic (FCC, gold spheres) and hexagonal close-packed (HCP, green spheres) spots, designated as (hkl)FCC planes on h -k = 3n + 1 (blue) and h -k = 3n -1 (red) along [011]FCC zone axis. (b) A sketch of the φ and ψ angles in the SAED patterns, showing that the (111)FCC diffraction reflection deviates from its original ψ = 70.52°, and thereby, it gradually comes close to the (101)HCP ε-martensite diffraction spot (ψ = 62.06°) in the case of h -k = 3n -1 [25,26]. (c) Relationship between the measured ψ angle and the stacking fault formation probability, as developed by Huang and Wang et al. [25,26]. The measured ψ angle → 54.74° indicates stacking fault formation probability → 0 in the case of h -k = 3n + 1 (blue curve), meaning that no stacking faults (or thermally-induced ε-martensite) appear in FCC structure.
Fig. 2. Correlative analysis of the location of carbon in Fe-17Mn-1.56C (at%) steel subjected to annealing at 1150 °C followed by air cooling: (a) Bright-field transmission electron microscopy (TEM) image of an atom probe tomography (APT) tip taken of a region containing a high-angle grain boundary (GB, yellow dotted line). (b) APT-reconstructed carbon map and the rotated view of the same as the TEM-observed tip shown in (a) The GB in the APT map was the same as the TEM-observed GB. (c) APT-reconstructed carbon maps including GBs in the 17Mn-1.1C, 17Mn-0.4C, and 17Mn-0.06C (at%) steel samples. Note that the 17Mn-0.06C (at%) steel was designated as an undoped 17Mn specimen in this study because the carbon content of 0.06 at% signifies an impurity. (d) One-dimensional concentration profiles of carbon across the APT-observed GBs for all the steel samples.
Fig. 3. (a) Variation in the GB carbon content (red) and soluble carbon content (black) within grains determined via APT and as a function of nominal carbon-doping content. (b) Calculated concentration ratio of GB carbon to soluble carbon shown in (a). (c) Relationship between the GB coverage factor (βc, red) of carbon and the nominal carbon-doping content in carbon-doped 17Mn steels. Also included are βc (black) values from the previously reported in ferritic steels [53]. (d) Plot of the segregation free energy of carbon, ΔGcGB = ?R·T·ln (βc), where R is the gas constant, T is the temperature, and βc is the GB coverage factor of carbon shown in (c) against the inverse of temperature for carbon-doped 17Mn steels.
Fig. 4. HRTEM or HAADF-STEM images (top panel), Fast Fourier transform patterns (FFT; right corner), and the corresponding FFT images (bottom panel), obtained from (a) undoped 17Mn, (b) 17Mn-0.4C, (c) 17Mn-1.1C, (d) 17Mn-1.56C steel samples. All the samples are in the annealed state.
Fig. 5. (a) Variation in FCC interplanar d-spacings of {220} planes in the undoped Fe-17Mn steel system and its carbon-doped versions, determined from STEM techniques, as a function of nominally doped soluble C content. (b) Dependence of the FCC lattice parameter on chemical composition.
Fig. 6. Stacking fault formation probabilities in undoped and carbon-doped 17Mn steels in the annealed state, determined from ψ angle measurements via electron diffraction: (a) typical SAED patterns along the [110]FCC zone axis, obtained from co-existing regions of austenite and thermally induced ε-martensite phases in the steels. All the electron patterns included FCC (yellow spheres and arrows) and HCP (green arrows) spots, showing the ψ angle between the diffraction spot of the FCC structure and transmitted spot. (b) Relationship between the ψ angle and the nominal carbon-doping content. (c) Variation in stacking-fault formation probability as a function of nominal carbon-doping content, determined from the relationship between the measured ψ angle and the stacking-fault forming probabilities in (b) and Fig. 1(c), respectively.
Fig. 7. (a) Representative low-magnified weak-beam dark-field TEM image and corresponding SAED pattern (right corner) showing plentiful intrinsic stacking faults, acquired from 17Mn-1.56C sample. (b) A sketch of intrinsic stacking faults for measuring the width of identified stacking faults. (c) Variation in stacking-fault width as a function of bulk carbon-doping content. (d) Variation in stacking-fault formation probability as a function of bulk carbon-doping content, determined from two different measurements, i.e., the stacking-fault width measurement and the ψ angle measurement in Fig. 6(c).
Fig. 8. Room-temperature SFE values of undoped and carbon-doped 17Mn steels, based on measurements of the stacking fault forming probabilities. The non-linear SFE variation as a function of nominal carbon-doping content is seen.
Fig. 9. (a) SFE map of Fe-Mn binary systems, determined from theoretical calculations or modeling (dotted lines) [20,26,63] and from TEM dislocation node method (continuous lines) [58-60]. The SFE value (9.9 ± 1.3 mJ/m2) of undoped 17Mn steel, estimated in this study, agrees with values estimated in two earlier theoretical studies via the supercell method [63] and thermodynamic considerations [30]. (b) SFE map of Fe-Mn-C ternary systems (by at%), determined from earlier theoretical calculations or modeling (dotted lines) [20,21,62] and experiments (continuous lines) [22,27].
[1] | D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Champman & Hall, 1996. |
[2] |
I. Gutierrez-Urrutia, D. Raabe, Scr. Mater. 68 (2013) 343-347.
DOI URL |
[3] |
S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89 (2017) 345-391.
DOI URL |
[4] |
S.-. J. Lee, S. Lee, B.C. De Cooman, Scr. Mater. 64 (2011) 649-652.
DOI URL |
[5] |
R. Kalsar, S. Suwas, Scr. Mater. 154 (2018) 207-211.
DOI URL |
[6] |
O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141-168.
DOI URL |
[7] |
T.S. Byun, Acta Mater 51 (2003) 3063-3071.
DOI URL |
[8] |
K. Sato, M. Ichinose, Y. Hirotsu, Y. Inoue, ISIJ Int 29 (1989) 868-877.
DOI URL |
[9] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater 142 (2018) 283-362.
DOI URL |
[10] |
J.J. Roa, G. Fargas, J. Calvo, E. Jiménez-Piqué, A. Mateo, Mater. Sci. Eng. A 628 (2015) 410-418.
DOI URL |
[11] |
S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater 52 (2004) 2005-2012.
DOI URL |
[12] |
D. Canadinc, H. Sehitoglu, H.J. Maier, Y.I. Chumlyakov, Acta Mater 53 (2005) 1831-1842.
DOI URL |
[13] |
S.I. Hong, C. Laird, Acta Metall. Mater. 38 (1990) 1581-1594.
DOI URL |
[14] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[15] | S. Allain, J.-.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387-389 (2004) 158-162. |
[16] | C. Wang, W. Zu, H. Wang, Y. Wang, Met. Mater. Int. (2021). |
[17] |
M. Jo, Y.M. Koo, S.K. Kwon, Met. Mater. Int. 21 (2015) 227-231.
DOI URL |
[18] |
P.J. Brofman, G.S. Ansell, Metall. Trans. A 9 (1978) 879-880.
DOI URL |
[19] |
R.E. Schramm, R.P. Reed, Metall. Trans. A 6 (1975) 1345-1351.
DOI URL |
[20] |
J. Nakano, P.J. Jacques, Calphad 34 (2010) 167-175.
DOI URL |
[21] |
A. saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40 (2009) 3076-3090.
DOI URL |
[22] |
Y.N. Petrov, Scr. Mater. 53 (2005) 1201-1206.
DOI URL |
[23] |
D.T. Pierce, J. Bentley, J.A. Jiménez, J.E. Wittig, Scr. Mater. 66 (2012) 753-756.
DOI URL |
[24] | D.J.H. Cockayne, J. Phys. Colloq. 35 (1974) C7141-C7148. |
[25] |
X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang, J. Appl. Phys. 101 (2007) 093511.
DOI URL |
[26] |
B.X. Huang, X.D. Wang, L. Wang, Y.H. Rong, Metall. Mater. Trans. A 39 (2008) 717-724.
DOI URL |
[27] | P.Y. Volosevich, V.N. Gridnev, Y.N. Petrov, Fiz. Met. Metalloved. 40 (1975) 554-559. |
[28] |
J.-.B. Seol, B.-.H. Lee, P. Choi, S.-.G. Lee, C.-.G. Park, Ultramicroscopy 132 (2013) 248-257.
DOI URL |
[29] |
J.-. B. Seol, J.E. Jung, Y.W. Jang, C.G. Park, Acta Mater 61 (2013) 558-578.
DOI URL |
[30] |
Y.-. K. Lee, C. Choi, Metall. Mater. Trans. A 31 (20 0 0) 355-360.
DOI URL |
[31] |
S.-.K. Oh, M.E. Kilic, J.-.B. Seol, J.-.S. Hong, A. Soon, Y.-.K. Lee, Acta Mater 188 (2020) 366-375.
DOI URL |
[32] |
J.B. Seol, J.G. Kim, S.H. Na, C.G. Park, H.S. Kim, Acta Mater 131 (2017) 187-196.
DOI URL |
[33] |
B. Gault, D. Haley, F. de Geuser, M.P. Moody, E.A. Marquis, D.J. Larson, B.P. Geiser, Ultramicroscopy 111 (2011) 448-457.
DOI PMID |
[34] |
J. Takahashi, K. Kawakami, Y. Kobayashi, Ultramicroscopy. 111 (2011) 1233-1238.
DOI PMID |
[35] |
I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361-1403.
DOI URL |
[36] |
D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-.P. Choi, Curr. Opin. Solid State Mater. Sci. 18 (2014) 253-261.
DOI URL |
[37] |
J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z. Li, H.H. Lee, S.H. Shim, J.H. Jang, W.-.S. Ko, S.I. Hong, H.S. Kim, Acta Mater 194 (2020) 366-377.
DOI URL |
[38] |
Z. Nishiyama, J. Kakinoki, S. Kajiwara, J. Phys. Soc. Jpn. 20 (1965) 1192-1211.
DOI URL |
[39] |
S. Kajiwara, Jpn. J. Appl. Phys. 9 (1970) 385.
DOI URL |
[40] |
S. Kajiwara, J. Phys. Soc. Jpn. 22 (1967) 795-803.
DOI URL |
[41] |
K. Ogawa, S. Kajiwara, Mater. Trans. JIM 34 (1993) 1169-1176.
DOI URL |
[42] |
J. Kakinoki, Acta Crystallogr 23 (1967) 875-885.
DOI URL |
[43] |
S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 36 (2005) 3281-3289.
DOI URL |
[44] | A. Seeger, Dislocations and Mechanical Properties of Crystals, John Wiley & Sons, Inc., New York, 1957. |
[45] | L.F. Vassamillet, J. Appl. Phys. 32 (1961) 778-782. |
[46] |
R.E. Smallman, K.H. Westmacott, Philos. Mag. 2 (1957) 669-683.
DOI URL |
[47] | N.I. Noskova, V.A. Pavlov, Phys. Met. Metallogr. 14 (1962) 87. |
[48] |
J.-. H. Kang, T. Ingendahl, W. Bleck, Mater. Des. 90 (2016) 340-349.
DOI URL |
[49] |
D. Music, T. Takahashi, L. Vitos, C. Asker, I.A. Abrikosov, J.M. Schneider, Appl. Phys. Lett. 91 (2007) 191904.
DOI URL |
[50] |
S.-.M. Lee, S.-.J. Lee, S. Lee, J.-.H. Nam, Y.-.K. Lee, Acta Mater 144 (2018) 738-747.
DOI URL |
[51] |
A. Seeger, G. Schottky, Acta Metall. 7 (1959) 495-503.
DOI URL |
[52] |
Y.N. Petrov, Scr. Metall. Mater. 29 (1993) 1471-1476.
DOI URL |
[53] |
D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-.P. Choi, Curr. Opin. Solid State Mater. Sci. 18 (2014) 253-261.
DOI URL |
[54] | V. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, properties, manufacture, Applications, Springer Science & Business Media, 1999. |
[55] | Y.N. Petrov, Naukova dumka, kiev (1978). |
[56] |
A. Saeed-Akbari, A.K. Mishra, J. Mayer, W. Bleck, Metall. Mater. Trans. A. 43 (2012) 1705-1723.
DOI URL |
[57] |
D. Li, L. Qian, C. Wei, S. Liu, F. Zhang, J. Meng, Mater. Sci. Eng. A 789 (2020) 139586.
DOI URL |
[58] |
H. Schumann, Krist. Tech. 9 (1974) 1141-1152.
DOI URL |
[59] | P.Y. Volosevich, V.H. Gridnev, Y.N. Petrov, Fiz. Met. Metalloved. 42 (1976) 372-376. |
[60] | Y.N. Petrov, T.F. Volynova, I.A. Yakubtsov, I.B. Medov, Fiz. Met. Metalloved. 68 (1989) 169-172. |
[61] |
N. Cabañas, J. Penning, N. Akdut, B.C. De Cooman, Metall. Mater. Trans. A. 37 (2006) 3305-3315.
DOI URL |
[62] | Y.K. Lee, in: A Study On Damping Capacity and γ→ εmartensitic Transforma-tion of Fe-Mn alloy, PhD Thesis, Yonsei Univ, Seoul, South Korea, 1998, p. 239. |
[63] |
Z. Dong, S. Schönecker, D. Chen, W. Li, S. Lu, L. Vitos, Int. J. Plast. 119 (2019) 123-139.
DOI URL |
[64] |
W. Woo, J.S. Jeong, D.-.K. Kim, C.M. Lee, S.-.H. Choi, J.-.Y. Suh, S.Y. Lee, S. Harjo, T. Kawasaki, Sci. Rep. 10 (2020) 1350.
DOI PMID |
[65] |
I.R. Souza Filho, A. Dutta, D.R. Almeida Junior, W. Lu, M.J.R. Sandim, D. Ponge, H.R.Z. Sandim, D. Raabe, Acta Mater. 197 (2020) 123-136.
DOI URL |
[1] | Hyun Chung, Dae Woong Kim, Woo Jin Cho, Heung Nam Han, Yuji Ikeda, Shoji Ishibashi, Fritz Körmann, Seok Su Sohn. Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys [J]. J. Mater. Sci. Technol., 2022, 108(0): 270-280. |
[2] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[3] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[4] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 10-18. |
[5] | Xi Li, Zhongtao Li, Zhenggang Wu, Shijun Zhao, Weidong Zhang, Hongbin Bei, Yanfei Gao. Strengthening in Al-, Mo-or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison [J]. J. Mater. Sci. Technol., 2021, 94(0): 264-274. |
[6] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[7] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[8] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[9] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
[10] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[11] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[12] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[13] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[14] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[15] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||