J. Mater. Sci. Technol. ›› 2022, Vol. 127: 144-152.DOI: 10.1016/j.jmst.2022.02.053
• Research Article • Previous Articles Next Articles
Yaqin Qia,b, Ting Jina,b,*(
), Kai Yuana,b, Jingyuan Youa,b, Chao Shena,b, Keyu Xiea,b,*(
)
Received:2022-01-08
Revised:2022-02-07
Accepted:2022-02-08
Published:2022-11-10
Online:2022-11-10
Contact:
Ting Jin,Keyu Xie
About author:kyxie@nwpu.edu.cn (K. Xie)Yaqin Qi, Ting Jin, Kai Yuan, Jingyuan You, Chao Shen, Keyu Xie. Chemically stable polypyrrole-modified liquid metal nanoparticles with the promising photothermal conversion capability[J]. J. Mater. Sci. Technol., 2022, 127: 144-152.
Fig 1. The schematic illustration of two different synthesis routes of EGaSn@PPy composite shows the nanostructure difference between without stabilizer of (a) EGaSn@C-PPy and with the SDBS adding of (b) EGaSn@W-PPy.
Fig 2. Microstructure characterization of EGaSn@C-PPy and EGaSn@W-PPy composite during the overall synthetic process. The TEM images of (a-i) EGaSn and (a-ii) EGaSn@C-PPy, and (b-i) S-EGaSn and (b-ii) EGaSn@W-PPy. The particle size distribution of (c) EGaSn and EGaSn@C-PPy, and (d) S-EGaSn and EGaSn@W-PPy. (e) The average diameter and PDI values of corresponding nanoparticles dispersion.
Fig 3. Detailed chemical composition and structure characterization of EGaSn@PPy composite. (a) XRD spectra of EGaSn, PPy, EGaSn@W-PPy, and EGaSn@C-PPy. (b) FT-IR spectra of pure PPy, EGaSn@W-PPy, and EGaSn@C-PPy. (c) XPS survey spectra of EGaSn, PPy, EGaSn@W-PPy, and EGaSn@C-PPy. High-resolution XPS spectra of (d) Ga 3d and (e) Ga 2p in EGaSn, EGaSn@W-PPy, and EGaSn@C-PPy. (f) High-resolution XPS spectra of N 1 s in PPy, EGaSn@W-PPy, and EGaSn@C-PPy.
Fig 4. Chemical stability test of EGaSn@C-PPy and EGaSn@W-PPy after storage in the aqueous solution. TEM images and EDS maps of (a) EGaSn@C-PPy and (b) EGaSn@W-PPy after storage 100 days. The XRD patterns of (c) EGaSn@C-PPy and (d) EGaSn@W-PPy after several different storage times. (e) The hydrodynamic size distribution of EGaSn@C-PPy and EGaSn@W-PPy after storage 100 days.
Fig 5. Photothermal performance and photothermal stability analysis of EGaSn@C-PPy and EGaSn@W-PPy. (a) Thermal images of EGaSn@C-PPy and EGaSn@W-PPy. (b) Temperature elevation and natural cooling curves of DI water, EGaSn, PPy, EGaSn@C-PPy, and EGaSn@W-PPy in the aqueous solution. (c) PCE values of EGaSn, PPy, EGaSn@C-PPy, and EGaSn@W-PPy. The TEM images and EDS maps (d) EGaSn@C-PPy and (e) EGaSn@W-PPy after NIR irradiation. (f) Schematic illustration of the photothermal stability of EGaSn@C-PPy and EGaSn@W-PPy composite. The gray sphere refers to the EGaSn nanoparticles. The blue circle is the oxide layer. The watermelon red layer and pink layer refer to the C-PPy and W-PPy, respectively.
| [1] |
T. Daeneke, K. Khoshmanesh, N. Mahmood, I. de Castro, D. Esrafilzadeh, S. Bar-row, M. Dickey, K. Kalantar-Zadeh, Chem. Soc. Rev. 47 (2018) 4073-4111.
DOI PMID |
| [2] |
K. Kalantar-Zadeh, J. Tang, T. Daeneke, A. O’Mullane, L. Stewart, J. Liu, C. Majidi, R. Ruoff, P. Weiss, M. Dickey, ACS Nano 13 (2019) 7388-7395.
DOI PMID |
| [3] |
J. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, Chem. Soc. Rev. 47 (2018) 2518-2533.
DOI URL |
| [4] |
S. Tang, R. Qiao, S. Yan, D. Yuan, Q. Zhao, G. Yun, T. Davis, W. Li, Small 14 (2018) 1800118.
DOI URL |
| [5] |
H. Liu, J. Xia, N. Zhang, H. Cheng, W. Bi, X. Zu, W. Chu, H. Wu, C. Wu, Y. Xie, Nat. Catal. 4 (2021) 202-211.
DOI URL |
| [6] | X. Guo, Y. Ding, G. Yu, Adv. Mater. 32 (2021) 2100052. |
| [7] |
S. Chen, Y. Ding, Q. Zhang, L. Wang, J. Liu, Sci. China Mater. 62 (2018) 407-415.
DOI URL |
| [8] |
Y. Liu, W. Zhang, H. Wang, Mater. Horiz. 8 (2021) 56-77.
DOI URL |
| [9] |
J. Hohman, M. Kim, G. Wadsworth, H. Bednar, J. Jiang, M. LeThai, P. Weiss, Nano Lett. 11 (2011) 5104-5110.
DOI URL |
| [10] |
Y. Lin, J. Genzer, W. Li, R. Qiao, M. Dickey, S. Tang, Nanoscale 10 (2018) 19871-19878.
DOI URL |
| [11] |
F. Centurion, M. Saborio, F. Allioux, S. Cai, M. Ghasemian, K. Kalantar-Zadeh, M. Rahim, Chem. Commun. 55 (2019) 11291-11294.
DOI URL |
| [12] |
Z. Farrell, C. Tabor, Langmuir 34 (2018) 234-240.
DOI URL |
| [13] |
Y. Liu, Q. Wang, S. Bi, W. Zhang, H. Zhou, X. Jiang, Nanoscale 12 (2020) 13731-13741.
DOI URL |
| [14] |
J. Yan, M. Malakooti, Z. Lu, Z. Wang, N. Kazem, C. Pan, M. Bockstaller, C. Majidi, K. Matyjaszewski, Nat. Nanotechnol. 14 (2019) 684-690.
DOI URL |
| [15] |
S. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu, E. Miyako, Nat. Commun. 8 (2017) 15432.
DOI PMID |
| [16] |
C. Thrasher, Z. Farrell, N. Morris, C. Willey, C. Tabor, Adv. Mater. 31 (2019) 1903864.
DOI URL |
| [17] |
J. Park, H. Kang, J. Baek, T. Park, S. Oh, H. Lee, M. Koo, C. Park, ACS Nano 13 (2019) 9122-9130.
DOI URL |
| [18] | M. Omastová, M. ˇcušík, Chem. Pap. 66 (2012) 392-414. |
| [19] |
H. Zhu, P. Cheng, P. Chen, K. Pu, Biomater. Sci. 6 (2018) 746-765.
DOI URL |
| [20] |
P. Xiao, J. Gu, C. Zhang, F. Ni, Y. Liang, J. He, L. Zhang, J. Ouyang, S. Kuo, T. Chen, Nano Energy 65 (2019) 104002.
DOI URL |
| [21] | J. Liu, M.Z. Gu, L.Z. Ouyang, H. Wang, L. Yang, M. Zhu, ACS Appl. Mater. Inter-faces 8 (2016) 8502-8510. |
| [22] |
M. Šišáková, Y. Asaumi, M. Uda, M. Seike, K. Oyama, S. Higashimoto, T. Hirai, Y. Nakamura, S. Fujii, Polym. J. 52 (2020) 589-599.
DOI URL |
| [23] |
Q. Qu, Y. Zhu, X. Gao, Y. Wu, Adv. Energy Mater. 2 (2012) 950-955.
DOI URL |
| [24] |
A. Zavabeti, J. Ou, B. Carey, N. Syed, R. Orrell-Trigg, E. Mayes, C. Xu, O. Kave-hei, A. O’Mullane, R. Kaner, K. Kalantar-Zadeh, T. Daeneke, Science 358 (2017) 332-335.
DOI URL |
| [25] |
S. Tang, D. Mitchell, Q. Zhao, D. Yuan, G. Yun, Y. Zhang, R. Qiao, Y. Lin, M. Dickey, W.H. Li, Matter 1 (2019) 192-204.
DOI URL |
| [26] |
R. Deshpande, J. Li, Y. Cheng, M. Verbrugge, J. Electrochem. Soc. 158 (2011) 845-849.
DOI |
| [27] |
S. Sun, L. Guo, X. Chang, Y. Yu, X. Zhai, Mater. Lett. 236 (2019) 558-561.
DOI URL |
| [28] |
C. Wei, H. Fei, Y. Tian, Y. An, G. Zeng, J. Feng, Y. Qian, Small 15 (2019) 1903214.
DOI URL |
| [29] |
L. Jiang, C. Dong, B. Jin, Z. Wen, Q. Jiang, J. Electroanal. Chem. 851 (2019) 113442.
DOI URL |
| [30] |
B. Han, D.W. Xu, S. Chi, D. He, Z. Zhang, L. Du, M. Gu, C. Wang, H. Meng, K. Xu, Z. Zheng, Y. Deng, Adv. Mater. 32 (2020) 2004793.
DOI URL |
| [31] |
J. Zhang, X. Zhao, J. Phys. Chem. C 116 (2012) 5420-5426.
DOI URL |
| [32] |
K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Adv. Mater. 24 (2012) 5586-5592.
DOI URL |
| [33] | J. Hu, M. Liu, Y. Chen, F. Gao, S. Peng, B. Xie, C. Li, X. Zeng, X. Zhang, Biomate-rials 207 (2019) 76-88. |
| [34] |
T. Gan, W. Shang, S. Handschuh-Wang, X. Zhou, Small 15 (2019) 1804838.
DOI URL |
| [35] |
J. Li, J. Han, T. Xu, C. Guo, X. Bu, H. Zhang, L. Wang, H. Sun, B. Yang, Langmuir 29 (2013) 7102-7110.
DOI URL |
| [36] |
J. Yan, X. Zhang, Y. Liu, Y. Ye, J. Yu, Q. Chen, J. Wang, Y. Zhang, Q. Hu, Y. Kang, M. Yang, Z. Gu, Nano Res. 12 (2019) 1313-1320.
DOI URL |
| [1] | Zaixin Wei, Zhongyang Wang, Ciqun Xu, Guohua Fan, Xiaoting Song, Yao Liu, Runhua Fan. Defect-induced insulator-metal transition and negative permittivity in La1-xBaxCoO3 perovskite structure [J]. J. Mater. Sci. Technol., 2022, 112(0): 77-84. |
| [2] | Xiang He, Min Wang, Fengren Cao, Wei Tian, Liang Li. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 124(0): 243-251. |
| [3] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
| [4] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
| [5] | Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning [J]. J. Mater. Sci. Technol., 2022, 118(0): 243-254. |
| [6] | Chengxiong Wei, Xin Jin, Chengwei Wu, Wei Zhang. Injectable composite hydrogel based on carbon particles for photothermal therapy of bone tumor and bone regeneration [J]. J. Mater. Sci. Technol., 2022, 118(0): 64-72. |
| [7] | H.R. Lashgari, M. Ferry, S. Li. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications [J]. J. Mater. Sci. Technol., 2022, 119(0): 131-149. |
| [8] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
| [9] | Chuanliang Wei, Liwen Tan, Yuchan Zhang, Huiyu Jiang, Baojuan Xi, Shenglin Xiong, Jinkui Feng. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes [J]. J. Mater. Sci. Technol., 2022, 115(0): 156-165. |
| [10] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
| [11] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
| [12] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
| [13] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
| [14] | S.-H. Joo, Y.B. Jeong, T. Wada, I.V. Okulov, H. Kato. Inhomogeneous dealloying kinetics along grain boundaries during liquid metal dealloying [J]. J. Mater. Sci. Technol., 2022, 106(0): 41-48. |
| [15] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
