J. Mater. Sci. Technol. ›› 2022, Vol. 119: 131-149.DOI: 10.1016/j.jmst.2021.09.068
• Invited Review • Previous Articles Next Articles
H.R. Lashgari(), M. Ferry, S. Li
Received:
2021-07-21
Revised:
2021-08-29
Accepted:
2021-09-24
Published:
2022-08-20
Online:
2022-01-25
Contact:
H.R. Lashgari
About author:
* E-mail address: h.lashgari@unsw.edu.au (H.R. Lashgari).H.R. Lashgari, M. Ferry, S. Li. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications[J]. J. Mater. Sci. Technol., 2022, 119: 131-149.
Manufacturing method | Chemical composition | Build environment | Powder size/Foil thickness | Powder/Foil supplier | Process parameters |
---|---|---|---|---|---|
SLM (SLM 250HL) | Fe74Mo4P10C7.5B2.5Si2 (at.%) | - | d < 50 µm | TLS Technik& Spezialpulver KG | P: 320 WV: 3470 mm/sh: 0.124 mmt: 50 µm [ |
SLM (SLM-100) | Al86Ni6Y4.5Co2La1.5 (at.%) | Ar | d < 25 µm | Institue of Metal Research, Chinse Academy of Sciences | P: 80, 120, 160, 200 WV: 1000 mm/sh: -t: - [ |
SLM (SLM 250HL) | Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1 (at.%) | Ar | 75 µm < d < 150 µm | - | P: 280-340 WV: 1500-4500 mm/sh: 110 µmt: 75 µm [ |
SLM (SLM-100) | Zr52.5Ti5Cu17.9Ni14.6Al10 (at.%) | Ar | 30 µm< d <108 µm | Liquid Metal | P: 200 WV: 500-2000 mm/sh: 0.1 mm, 0.15 mmt: 100 µm [ |
SLM (SLM50(H)) | Zr52.5Ti5Cu17.9Ni14.6Al10 (at.%) | Ar | d = 35 µm | Nanoval & Co. KG. | P: 75-120 WV: 250-2000 mm/sh: 100-200 µmt: 40 µm [ |
SLM (EOS M280) | FeCrMoCB | Ar | 20 µm < d < 80 µm | Liquid Metal | P: 80-200 WV: 800-5000 mm/sh: 0.05-0.15 mmt: 20 µm [ |
SLM (EOS M290) | Zr59.3Cu28.8Nb1.5Al10.4 (at.%) | - | - | - | -[ |
SLM (SLM 50) | Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) | - | 10 µm < d < 90 µm | Nanoval GmbH | P: 60 WV: 2000 mm/sh: 140 µmt: 40 µm [ |
SLM (SLM LM-120) | Zr55Cu30Ni5Al10 (at.%) | Ar | d < 33 µm | - | P: 240 WV: 1200 mm/sh: 100 µmt: 60 µm [ |
DMD (Optomec 750 LENS) | Cu47Ti33Zr11Ni8Si1 on Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 amorphous substrate | Ar | d ≈ 35 µm | Ames Lab | P: 100-250 WV: 4.2-12.7 mm/sFR: 1.5 g/min [ |
DMD (Optomec 750 LENS) | Fe58Cr15Mn2B16C4Mo2Si1W1Zr1 (at.%) on 304 SS substrate | Ar | 10 µm < d < 110 µm | - | P: 180-296 WV: 4.23-12.7 mm/sFR: 6-10 g/min [ |
DMD (Optomec 750 LENS) | Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 on amorphous and crystalline substrates (same composition) | Ar | d≈30 µm | Ames Lab | P: 100-250 WV: 4.2-12.7 mm/sFR: 1.5 g/min [ |
DMD (Optomec 750 LENS) | Fe<65Cr<25Mo<15W<10C<3Mn5<Si<2B<5 on 316 SS | Ar | 53 µm < d < 180 µm | NanoSteel | P: 250 WV: 20 mm/sFR: 19 g/min [ |
LSF* (Pulsed laser) | Zr55Cu30Ni5Al10 (at.%) on amorphous substrate (same composition) | Ar | 5 µm < d < 150 µm | - | E: 80 JV: 0.095 mm/sυ: 0.1 Hz [ |
DMD (Optomec 750 LENS) | FeCrMoWMnCSiB on 304 L SS | Ar | 44 µm < d < 149 µm | NanoSteel | P: 350 WV: 36 mm/sFR: 12.6 g/min [ |
DMD (Optomec 750 LENS) | Zr65Cu15Ni10Al10 (at.%) on Inconel 625 substrate | Ar | d < 150 µm | Atalantic equipment engineers | P: 150-350 WV: 10-30 mm/sFR: 9.1 g/min [ |
EBM (EBM A1Arcam AB) | Zr70Cu24Al4Nb2 (at.%) | Vacuum | d ≈ 65 µm | - | BC: 20-32 mAV: 6-12 m/st: 125 µm [ |
LFP (Missouri S&T) | Zr52.5Ti5Al10Ni14.6Cu17.9 (at.%) on Ti64 and Zr702 substrates | Ar | FT: 100 µm | Liquidmetal LM105 | P: 300-500 WV: 240-588 mm/s [ |
LFP (Missouri S&T) | Zr65Al7.5Ni10Cu17.5 (at.%) | Ar | FT: 150 µm | Eco. FM | P: 300 W (pulse mode) [ |
LFP (Missouri S&T) | Zr65.7Ti3.3Al3.7Ni11.7Cu15.6 (at.%) on Ti64 | Ar | FT: 200 µm | Liquidmetal LM105 | P: 300 W (pulse mode) [ |
Thermal Spray 3D Printing (HVOF) | Fe48C15B6Mo14Cr15Y2on Mild Steel substrate | O2 and Kerosene | 35 µm< d <55 µm | Changsha HualiuMetallurgy Powder Co. | FR: 30 g/mint: 40 µm [ |
Fused Filament Fabrication (FFF) | Zr44Ti11Cu10Ni10Be25 | Room environment | Rod(Ø: 1 mm, L: 700 mm) | Desktop Metal, MIT, Yale University | Extrusion temp.: 460 °C, Viscosity: 105 Pa s [ |
Table 1. The most common BMGs made by additive manufacturing technologies.
Manufacturing method | Chemical composition | Build environment | Powder size/Foil thickness | Powder/Foil supplier | Process parameters |
---|---|---|---|---|---|
SLM (SLM 250HL) | Fe74Mo4P10C7.5B2.5Si2 (at.%) | - | d < 50 µm | TLS Technik& Spezialpulver KG | P: 320 WV: 3470 mm/sh: 0.124 mmt: 50 µm [ |
SLM (SLM-100) | Al86Ni6Y4.5Co2La1.5 (at.%) | Ar | d < 25 µm | Institue of Metal Research, Chinse Academy of Sciences | P: 80, 120, 160, 200 WV: 1000 mm/sh: -t: - [ |
SLM (SLM 250HL) | Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1 (at.%) | Ar | 75 µm < d < 150 µm | - | P: 280-340 WV: 1500-4500 mm/sh: 110 µmt: 75 µm [ |
SLM (SLM-100) | Zr52.5Ti5Cu17.9Ni14.6Al10 (at.%) | Ar | 30 µm< d <108 µm | Liquid Metal | P: 200 WV: 500-2000 mm/sh: 0.1 mm, 0.15 mmt: 100 µm [ |
SLM (SLM50(H)) | Zr52.5Ti5Cu17.9Ni14.6Al10 (at.%) | Ar | d = 35 µm | Nanoval & Co. KG. | P: 75-120 WV: 250-2000 mm/sh: 100-200 µmt: 40 µm [ |
SLM (EOS M280) | FeCrMoCB | Ar | 20 µm < d < 80 µm | Liquid Metal | P: 80-200 WV: 800-5000 mm/sh: 0.05-0.15 mmt: 20 µm [ |
SLM (EOS M290) | Zr59.3Cu28.8Nb1.5Al10.4 (at.%) | - | - | - | -[ |
SLM (SLM 50) | Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 (at.%) | - | 10 µm < d < 90 µm | Nanoval GmbH | P: 60 WV: 2000 mm/sh: 140 µmt: 40 µm [ |
SLM (SLM LM-120) | Zr55Cu30Ni5Al10 (at.%) | Ar | d < 33 µm | - | P: 240 WV: 1200 mm/sh: 100 µmt: 60 µm [ |
DMD (Optomec 750 LENS) | Cu47Ti33Zr11Ni8Si1 on Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 amorphous substrate | Ar | d ≈ 35 µm | Ames Lab | P: 100-250 WV: 4.2-12.7 mm/sFR: 1.5 g/min [ |
DMD (Optomec 750 LENS) | Fe58Cr15Mn2B16C4Mo2Si1W1Zr1 (at.%) on 304 SS substrate | Ar | 10 µm < d < 110 µm | - | P: 180-296 WV: 4.23-12.7 mm/sFR: 6-10 g/min [ |
DMD (Optomec 750 LENS) | Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 on amorphous and crystalline substrates (same composition) | Ar | d≈30 µm | Ames Lab | P: 100-250 WV: 4.2-12.7 mm/sFR: 1.5 g/min [ |
DMD (Optomec 750 LENS) | Fe<65Cr<25Mo<15W<10C<3Mn5<Si<2B<5 on 316 SS | Ar | 53 µm < d < 180 µm | NanoSteel | P: 250 WV: 20 mm/sFR: 19 g/min [ |
LSF* (Pulsed laser) | Zr55Cu30Ni5Al10 (at.%) on amorphous substrate (same composition) | Ar | 5 µm < d < 150 µm | - | E: 80 JV: 0.095 mm/sυ: 0.1 Hz [ |
DMD (Optomec 750 LENS) | FeCrMoWMnCSiB on 304 L SS | Ar | 44 µm < d < 149 µm | NanoSteel | P: 350 WV: 36 mm/sFR: 12.6 g/min [ |
DMD (Optomec 750 LENS) | Zr65Cu15Ni10Al10 (at.%) on Inconel 625 substrate | Ar | d < 150 µm | Atalantic equipment engineers | P: 150-350 WV: 10-30 mm/sFR: 9.1 g/min [ |
EBM (EBM A1Arcam AB) | Zr70Cu24Al4Nb2 (at.%) | Vacuum | d ≈ 65 µm | - | BC: 20-32 mAV: 6-12 m/st: 125 µm [ |
LFP (Missouri S&T) | Zr52.5Ti5Al10Ni14.6Cu17.9 (at.%) on Ti64 and Zr702 substrates | Ar | FT: 100 µm | Liquidmetal LM105 | P: 300-500 WV: 240-588 mm/s [ |
LFP (Missouri S&T) | Zr65Al7.5Ni10Cu17.5 (at.%) | Ar | FT: 150 µm | Eco. FM | P: 300 W (pulse mode) [ |
LFP (Missouri S&T) | Zr65.7Ti3.3Al3.7Ni11.7Cu15.6 (at.%) on Ti64 | Ar | FT: 200 µm | Liquidmetal LM105 | P: 300 W (pulse mode) [ |
Thermal Spray 3D Printing (HVOF) | Fe48C15B6Mo14Cr15Y2on Mild Steel substrate | O2 and Kerosene | 35 µm< d <55 µm | Changsha HualiuMetallurgy Powder Co. | FR: 30 g/mint: 40 µm [ |
Fused Filament Fabrication (FFF) | Zr44Ti11Cu10Ni10Be25 | Room environment | Rod(Ø: 1 mm, L: 700 mm) | Desktop Metal, MIT, Yale University | Extrusion temp.: 460 °C, Viscosity: 105 Pa s [ |
Fig. 2. Dissimilar welding, using electron beam welding (EBM), of Zr41Be23Ti14Cu12Ni10 BMG to (a) pure Zr metal, (b) pure Ti metal, and (c) tensile sample showing a strong bond between the BMG and Zr (reproduced with permission from Elsevier) [60].
Fig. 4. (a, b) Scaffold and cylindrical structures made from Fe74Mo4P10C7.5B2.5Si2 BMG and (c) X-ray diffraction spectrum showing a mixture of amorphous and crystalline phases (reproduced with permission from Elsevier) [35].
Fig. 5. Density map vs laser power and scanning speed in Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1 (at.%) BMG (reproduced with permission from Elsevier) [37].
Fig. 7. (a) Single-layer deposition by DMD showing an inhomogeneous melt zone and crystallization in HAZ, and (b) remelting of the as-deposited layer (reproduced with permission from MRS) [45].
Fig. 8. (a) Interface of 316 substrate and Fe-based metallic glass, showing a dilution region and crystalline pockets, and (b) nearly uniform distribution of elemental constituents within the dilution zone (reproduced with permission from Elsevier) [47].
Fig. 10. Effect of processing parameters on the sintering process in EBM: (a) The powder remains loose and intact (8 m/s, 22 mA), and (b) complete fusion (12 m/s, 32 mA) (reproduced with permission from RTeJournal) [51].
Fig. 11. The laser foil printing (LFP) process and a range of BMG parts with different shapes and geometries (reproduced with permission from Elsevier) [53,85].
Fig. 12. LFP processing of Zr-based BMG showing elemental maps and EDS line scans: (a) the first layer of foil and (b) the second layer of foil (reproduced with permission from Elsevier) [52].
Fig. 13. (a) Schematic of thermal spray 3D printing process using an HVOF system, (b) BMGs parts printed by thermal spray 3D printing, (c, d) fracture surfaces of 3D printed BMG vs as-cast BMG showing step-wise feature along the crack pathway due to layer-by-layer deposition (reproduced with permission) [56].
Fig. 14. Nanohardness maps of a Zr52.5Ti5Cu17.9Ni14.6Al10 BMG produced by SLM: (a) single scan (E = 13.3 J/mm3, V = 2000 m/s), and (b) multiple scan (E = 13.3 J/mm3, V = 2000 m/s) (reproduced with permission from Elsevier) [38].
Fig. 15. (a) Compression strength of Zr52.5Ti5Cu17.9Ni14.6Al10 SLM-produced BMG and as-cast BMG, (b) fracture surface of as-cast BMG showing river-like pattern, and (c) fracture surface of SLMed BMG, showing unmelted powder (reproduced with permission from Elsevier) [39].
Fig. 16. Hardness as a function of distance from the stainless steel substrate in Fe-based amorphous coating (reproduced with permission from Springer) [34].
Fig. 17. (a, b) LFP-processed Zr-based BMG beams on a Zr substrate, and (c) four-point bend testing of the beams, showing high strength and plasticity (reproduced with permission from Springer) [55].
AM technology | Thermal residual stress | GFA | Build-plate internal cooling | Printing resolution | Printing efficiency | Printing density |
---|---|---|---|---|---|---|
SLM | ++++ | +++ | √ | +++ | +++ | +++ |
DMD | ++++ | +++ | √ | ++ | +++ | +++ |
EBM | ++ | ++++ | × | + ++ | ++ | ++++ |
LFP | ++++ | +++ | √ | ++ | + | ++++ |
FFF | + | ++++ | × | + | ++ | +++ |
TS3DP | + | ++++ | √ | ++ | ++ | +++ |
Table 2. Comparison of AM technologies for producing BMGs.
AM technology | Thermal residual stress | GFA | Build-plate internal cooling | Printing resolution | Printing efficiency | Printing density |
---|---|---|---|---|---|---|
SLM | ++++ | +++ | √ | +++ | +++ | +++ |
DMD | ++++ | +++ | √ | ++ | +++ | +++ |
EBM | ++ | ++++ | × | + ++ | ++ | ++++ |
LFP | ++++ | +++ | √ | ++ | + | ++++ |
FFF | + | ++++ | × | + | ++ | +++ |
TS3DP | + | ++++ | √ | ++ | ++ | +++ |
[1] |
K.J. Laws, D.B. Miracle, M. Ferry, Nat. Commun. 6 (2015) 8123.
DOI PMID |
[2] |
J.E. Gao, et al., Acta Mater. 61 (9) (2013) 3214-3223.
DOI URL |
[3] |
E. Axinte, Mater. Des. 35 (2012) 518-556.
DOI URL |
[4] |
A. Inoue, A. Takeuchi, Acta Mater. 59 (6) (2011) 2243-2267.
DOI URL |
[5] |
W. Wang, Prog. Mater. Sci. 52 (4) (2007) 540-596.
DOI URL |
[6] | A. Inoue, A. Takeuchi, Mater. Sci. Eng. A 375-377 (2004) 16-30. |
[7] | R. Nowosielski, J. Anna, R. Babilas, J. Achiev. Mater. Manuf. Eng. 55 (2) (2012) 349-354. |
[8] | R. Nowosielski, R. Babilas, J. Achiev. Mater. Manuf. Eng. 42 (1-2) (2010) 66-72. |
[9] | A.P. Zykova, et al., Metals 10 (6) (2020). |
[10] | L. Zuo, et al., Mater. Sci. Eng. A 772 (2020). |
[11] | W.J. Botta, et al., J. Alloy. Compd. (2013) S105-S110. |
[12] |
J. Farmer, et al., Metall. Mater. Trans. A 40 (6) (2009) 1289-1305.
DOI URL |
[13] |
K. Hashimoto, Appl. Surf. Sci. 257 (19) (2011) 8141-8150.
DOI URL |
[14] |
H.R. Lashgari, et al., J. NonCryst. Solids 391 (2014) 61-82.
DOI URL |
[15] |
A. Wang, et al., J. Alloy. Compd. 630 (2015) 209-213.
DOI URL |
[16] |
A. Inoue, N. Nishiyama, MRS Bull. 32 (8) (2011) 651-658.
DOI URL |
[17] |
J.G. Wang, et al., Mater. Sci. Eng. A 651 (2016) 321-331.
DOI URL |
[18] |
S.V. Ketov, D.V. Louzguine-Luzgin, Sci. Rep. 3 (2013) 2798.
DOI PMID |
[19] |
Y.Q. Cheng, E. Ma, Prog. Mater Sci. 56 (4) (2011) 379-473.
DOI URL |
[20] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (12) (2007) 4067-4109.
DOI URL |
[21] |
J.J. Lewandowski, A.L. Greer, Nat. Mater. 5 (1) (2005) 15-18.
DOI URL |
[22] |
J. Hyun Na, M.D. Demetriou, W.L. Johnson, Appl. Phys. Lett. 99 (16) (2011) 161902.
DOI URL |
[23] |
D.M. Mini ´c, et al., Mater. Chem. Phys. 134 (1) (2012) 111-115.
DOI URL |
[24] |
D.M. Mini ´c, et al., Intermetallics 25 (2012) 75-79.
DOI URL |
[25] |
D.M. Mini ´c, et al., J. Alloy. Compd. 509 (33) (2011) 8350-8355.
DOI URL |
[26] |
V.A. Blagojevi ´c, et al., Intermetallics 19 (12) (2011) 1780-1785.
DOI URL |
[27] | T. Egami, J. Alloy. Compd. 509 (2011) S82-S86. |
[28] |
H.R. Lashgari, et al., Mater. Des. 92 (2016) 919-931.
DOI URL |
[29] |
Z.T. Wang, et al., Phys. Rev. Lett. 111 (13) (2013) 135504-135505.
DOI URL |
[30] |
P. Sharma, et al., Scr. Mater. 95 (2015) 3-6.
DOI URL |
[31] |
L. Liu, et al., Materials 11 (11) (2018) 1-12 (Basel).
DOI URL |
[32] |
M. Bakkal, Intermetallics 18 (6) (2010) 1251-1253.
DOI URL |
[33] | E.S.P. Hyung Gu Kang, W.T. Kim, D.H. Kim, H.K. Cho, JIM 41 (7) (2000) 846-849. |
[34] |
B. Zheng, et al., Metall. Mater. Trans. A 40 (5) (2009) 1235-1245.
DOI URL |
[35] |
S. Pauly, et al., Mater. Today 16 (1-2) (2013) 37-41.
DOI URL |
[36] |
X.P. Li, et al., Mater. Sci. Eng. A 606 (2014) 370-379.
DOI URL |
[37] |
H.Y. Jung, et al., Mater. Des. 86 (2015) 703-708.
DOI URL |
[38] |
X.P. Li, et al., Mater. Des. 112 (2016) 217-226.
DOI URL |
[39] |
S. Pauly, et al., Mater. Des. 135 (2017) 133-141.
DOI URL |
[40] | Z. Mahbooba, et al., Appl. Mater. Today 11 (2018) 264-269. |
[41] | P. Bordeenithikasem, et al., Addit. Manuf. 21 (2018) 312-317. |
[42] |
L. Deng, et al., Mater. Lett. 212 (2018) 346-349.
DOI URL |
[43] |
D. Ouyang, N. Li, L. Liu, J. Alloy. Compd. 740 (2018) 603-609.
DOI URL |
[44] |
C. Yang, et al., Intermetallics 94 (2018) 22-28.
DOI URL |
[45] |
H. Sun, K.M. Flores, J. Mater. Res. 23 (10) (2011) 2692-2703.
DOI URL |
[46] |
H. Sun, K.M. Flores, Metall. Mater. Trans. A 41 (7) (2010) 1752-1757.
DOI URL |
[47] |
V.K. Balla, A. Bandyopadhyay, Surf. Coat. Technol. 205 (7) (2010) 2661-2667.
DOI URL |
[48] |
G. Yang, et al., Intermetallics 22 (2012) 110-115.
DOI URL |
[49] |
X. Ye, Y.C. Shin, Surf. Coat. Technol. 239 (2014) 34-40.
DOI URL |
[50] |
X. Ye, et al., Metall. Mater. Trans. A 46 (9) (2015) 4316-4325.
DOI URL |
[51] | H. Seitz, RTeJournal Fachforum für Rapid Technol. (2015) 2015. |
[52] |
Y. Li, et al., J. Mater. Process. Technol. 248 (2017) 249-261.
DOI URL |
[53] |
Y. Shen, et al., Mater. Des. 117 (2017) 213-222.
DOI URL |
[54] |
Y. Li, et al., Mater. Sci. Eng. A 743 (2019) 404-411.
DOI URL |
[55] | P. Bordeenithikasem, et al., Addit. Manuf. 19 (2018) 95-103. |
[56] | C. Zhang, et al., J. Mater. Chem. A 6 (16) (2018) 6 800-6 805. |
[57] |
M.A. Gibson, et al., Mater. Today 21 (7) (2018) 697-702.
DOI URL |
[58] | H. Liu, et al., Addit. Manuf. (2020) 36. |
[59] |
Y. Kawamura, S. Kagao, Y. Ohno, Mater. Trans. 42 (12) (2001) 2649-2651.
DOI URL |
[60] | S. Kagao, Y. Kawamura, Y. Ohno, Mater. Sci. Eng. A 375-377 (2004) 312-316. |
[61] | A. Langlet, Method of producing products of amorphous metal.US8052923B2, 2011 |
[62] | Langlet, P.S.a.A., Method of producing objects containing nano metal or com- posite metal. US 8, 333,922 B2, 2012. |
[63] |
H. Fayazfar, et al., Mater. Des. 144 (2018) 98-128.
DOI URL |
[64] |
Z. Yan, et al., Opt. Laser Technol. 106 (2018) 427-441.
DOI URL |
[65] | T.D. Ngo, et al., Compos. Part B Eng. (2018) 270-284. |
[66] | A. du Plessis, I. Yadroitsava, I. Yadroitsev, Mater. Des. (2019) 242-269. |
[67] |
J. Zhang, et al., J. Mater. Sci. Technol. 35 (2) (2019) 270-284.
DOI URL |
[68] |
N. Li, et al., J. Mater. Sci. Technol. 35 (2) (2019) 242-269.
DOI URL |
[69] |
H. Qin, et al., Mater. Charact. 145 (2018) 29-38.
DOI URL |
[70] | S. Pasebani, et al., Addit. Manuf. 22 (2018) 127-137. |
[71] |
H. Irrinki, et al., Powder Technol. 331 (2018) 192-203.
DOI URL |
[72] |
A. Yadollahi, et al., Int. J. Fatigue 94 (2017) 218-235.
DOI URL |
[73] | D. Ouyang, et al., Addit. Manuf. 23 (2018) 246-252. |
[74] |
M. Masoomi, et al., Data Brief 13 (2017) 408-414.
DOI URL |
[75] | D. Ouyang, et al., Appl. Mater. Today 23 (2021) 1-12. |
[76] | M. Neikter, et al., Mater. Charact. (2018). |
[77] |
C. Körner, Int. Mater. Rev. 61 (5) (2016) 361-377.
DOI URL |
[78] | X. Gong, T. Anderson, K. Chou, Manuf. Rev. 1 (2014) 431-438. |
[79] | A. Koptyug, L.E. Rännar, M. Bäckström, A. Langlet, in: Proceedings of the Inter- national Conference on Additive Manufacturing and 3D Printing, Nottingham, UK, 2013. |
[80] |
Y. Kawamura, T. Shoji, Y. Ohno, J. NonCryst. Solids 317 (1-2) (2003) 152-157.
DOI URL |
[81] |
C.L. Li, et al., Appl. Surf. Sci. 280 (2013) 431-438.
DOI URL |
[82] | M. Iqbal, et al., Key Eng. Mater. 510-511 (2012) 43-50. |
[83] |
N.H. Tariq, et al., J. Alloy. Compd. 460 (1-2) (2008) 258-262.
DOI URL |
[84] |
H.W. Bergmann, B.L. Mordike, J. Mater. Sci. 16 (4) (1981) 863-869.
DOI URL |
[85] | Y. Shen, Research On Additive Manufacturing of Metallic Glass Alloy Doctoral Dissertation,Missouri University of Science and Technology, 2018. |
[86] |
Y. Shen, Y. Li, H.L. Tsai, J. NonCryst. Solids 481 (2018) 299-305.
DOI URL |
[87] | Y.L. Yiyu Shen, H.L. Tsai, in:Proceedings of the 28th Annual International Solid Freeform Fabrication, 2017, pp. 755-770. 2017. |
[88] |
Y. Li, et al., Acta Mater. 144 (2018) 810-821.
DOI URL |
[89] |
C. Zhang, et al., Scr. Mater. 177 (2020) 112-117.
DOI URL |
[90] | D.C. Hofmann, et al., Adv. Eng. Mater. 20 (10) (2018) 254-264. |
[91] |
T.C. Hufnagel, C.A. Schuh, M.L. Falk, Acta Mater. 109 (2016) 375-393.
DOI URL |
[92] | W.H. Wang, Prog. Mater Sci. (2019) 106. |
[93] |
N. Li, et al., Mater. Des. 143 (2018) 285-296.
DOI URL |
[94] | D. Ouyang, et al., Mater. Sci. Eng. A 61 (2020) 782. |
[95] |
S.J. Wu, et al., J. Mater. Sci. Technol. 67 (2021) 254-264.
DOI |
[96] | N. Sohrabi, et al., Mater. Des. 32 (2021) 199. |
[97] |
D.T.A. Matthews, V. Ocelík, J.T.M. de Hosson, Mater. Sci. Eng. A 471 (1-2) (2007) 155-164.
DOI URL |
[98] |
Y. Lu, Y. Huang, J. Wu, J. Alloy. Compd. 766 (2018) 506-510.
DOI URL |
[99] | D.C. Hofmann, et al., Adv. Eng. Mater. 19 (1) (2017) S539-S543. |
[100] |
G. Herzer, Acta Mater. 61 (3) (2013) 718-734.
DOI URL |
[101] |
R. Conteri, et al., J. Manuf. Process. 29 (2017) 175-181.
DOI URL |
[102] |
T. Borkar, et al., Mater. Manuf. Process. 32 (14) (2016) 1581-1587.
DOI URL |
[103] |
J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22 (2) (2011) 302-313.
DOI URL |
[104] |
C. Zhang, et al., J. Alloy. Compd. 790 (2019) 963-973.
DOI URL |
[105] | Y.S. Sun, et al., J. Alloy. Compd. 586 (2014) S539-S543. |
[106] | A. Srikanth, G. Mohammed Thalib Basha, B. Venkateshwarlu, Mater. Today Proc. 22 (2020) 1390-1397. |
[107] |
E. Irissou, J.G. Legoux, A.N. Ryabinin, B. Jodoin, C. Moreau, J. Therm. Spray Technol. 17 (4) (2008) 495-516.
DOI URL |
[108] |
F. Gärtner, et al., J. Therm. Spray Technol. 15 (2) (2006) 223-232.
DOI URL |
[109] |
T. Stoltenhoff, H. Kreye, H.J. Richter, J. Therm. Spray Technol. 11 (4) (2002) 542-550.
DOI URL |
[1] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[2] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[3] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[4] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[5] | Jie Kuang, Xiaolong Zhao, Yuqing Zhang, Jinyu Zhang, Gang Liu, Jun Sun, Guangming Xu, Zhaodong Wang. Impact of thermal exposure on the microstructure and mechanical properties of a twin-roll cast Al-Mn-Fe-Si strip [J]. J. Mater. Sci. Technol., 2022, 107(0): 183-196. |
[6] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[7] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[8] | Xuelian Wu, Si Lan, Xiyang Li, Ming Yang, Zhenduo Wu, Xiaoya Wei, Haiyan He, Muhammad Naeem, Jie Zhou, Zhaoping Lu, Elliot Paul Gilbert, Dong Ma, Xun-Li Wang. Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass [J]. J. Mater. Sci. Technol., 2022, 101(0): 285-293. |
[9] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[10] | Hongbo Zhou, Vitaly Khonik, Gerhard Wilde. On the shear modulus and thermal effects during structural relaxation of a model metallic glass: Correlation and thermal decoupling [J]. J. Mater. Sci. Technol., 2022, 103(0): 144-151. |
[11] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[12] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[13] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[14] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[15] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||