J. Mater. Sci. Technol. ›› 2022, Vol. 103: 144-151.DOI: 10.1016/j.jmst.2021.05.081
Previous Articles Next Articles
Hongbo Zhoua,*(), Vitaly Khonikb, Gerhard Wildea,*(
)
Received:
2021-04-26
Revised:
2021-05-17
Accepted:
2021-05-17
Published:
2022-03-20
Online:
2021-08-27
Contact:
Hongbo Zhou,Gerhard Wilde
About author:
gwilde@uni-muenster.de (G. Wilde).Hongbo Zhou, Vitaly Khonik, Gerhard Wilde. On the shear modulus and thermal effects during structural relaxation of a model metallic glass: Correlation and thermal decoupling[J]. J. Mater. Sci. Technol., 2022, 103: 144-151.
Fig. 1. XRD and SAED patterns for (a) as-cast, (b) HPT deformed state after 10 revolutions, and (c) sub-Tg annealed state at 533 K for 360 min. All HPT deformation and sub-Tg annealing treatments were performed on the as-cast state in this work.
Fig. 2. Temperature dependence of the shear modulus for Pd40Ni40P20 MG samples in different states. The heating rate was 3 K/min for all measurements. The convergence of the curves above Tg for different glassy samples indicates the reliable accuracy of the measurement.
Fig. 3. Calculated interstitial-type defect concentrations and their temperature dependencies upon isochronous heating based on the corresponding shear modulus data using Eq. (1)) for as-cast, AC_N03, AC_N10, AC_473 K/30 min and AC_533 K/360 min samples. The shear susceptibility β amounts to 21 for the Pd40Ni40P20 metallic glass [56].
Fig. 4. Total heat flow (HF), reversible heat flow (Rev HF) and nonreversible heat flow (Nonrev HF) measured by MDSC (endotherm upwards) for the as-cast, AC_N10, AC_473 K/30 min and AC_533 K/360 min samples. The heating rate was 5 K/min.
Fig. 5. (a) DSC measurements (endotherm upwards) of the AC_473 K/30 min sample at different heating rates. (b) Kissinger plots of the peak temperature versus heating rate for the shadow glass transition and glass transition overshoot.
Fig. 6. Calculated heat flow (dotted lines) based on the shear moduli using Eq. (5) and the corresponding experimental heat flow (solid lines) for as-cast, AC_N10 and AC_473 K/30 min samples (endotherm upwards). The green arrow denotes that the hump part (in the green box) during the exothermic process of the as-cast sample shifts to be the shadow glass transition after annealing at 473 K for 30 min.
Fig. 7. (I) Atomic motions (from transparent spheres to corresponding solid spheres) during internal stress relaxation in the frozen state (blue spheres), resulting in the reduction of average atomic distance and the shrinkage of MGs. (II) Local cage-breaking processes and the generation of local supercooled liquids (orange spheres within the dashed circle), leading to β relaxation. (III) Massive cage-breaking processes and the generation of supercooled liquid on the global scale (red spheres), leading to α-relaxation. (IV) The evolution of the relaxation spectrum is shown by three typical states. The as-cast state contains significant internal stress relaxation (blue area), β-relaxation (orange area) and α-relaxation (red area). If the annealing 1 (Ann1) is applied, the relaxation spectrum will consist of internal stress relaxation (blue pattern), β-relaxation (orange pattern) and α-relaxation (red area). If the annealing 2 (Ann2) is applied, β-relaxation is reduced to be a weak shoulder of α-relaxation, and α-relaxation (red pattern) is significantly enhanced. Internal stress relaxation is undetectable.
[1] |
P. Murali, U. Ramamurty, Acta Mater. 53 (2005) 1467-1478.
DOI URL |
[2] |
M. Launey, R. Busch, J. Kruzic, Acta Mater. 56 (2008) 500-510.
DOI URL |
[3] |
Y. Wu, H. Wang, X. Liu, X. Chen, X. Hui, Y. Zhang, Z. Lu, J. Mater. Sci. Technol. 30 (2014) 566-575.
DOI |
[4] |
X. Tong, G. Wang, Z. Stachurski, J. Bednarčík, N. Mattern, Q. Zhai, J. Eckert, Sci. Rep. 6 (2016) 1-12.
DOI URL |
[5] |
J. Qiao, J.M. Pelletier, J. Mater. Sci. Technol. 30 (2014) 523-545.
DOI |
[6] |
Y. Yue, S. Jensen, J.D. Christiansen, Appl. Phys. Lett. 81 (2002) 2983-2985.
DOI URL |
[7] |
L. Hu, C. Zhou, C. Zhang, Y. Yue, J. Chem. Phys. 138 (2013) 174508.
DOI URL |
[8] |
H. Zhou, R. Hubek, M. Peterlechner, G. Wilde, Acta Mater. 179 (2019) 308-316.
DOI URL |
[9] |
H. Chen, A. Inoue, T. Masumoto, J. Mater. Sci. 20 (1985) 2417-2438.
DOI URL |
[10] |
Q. Yang, S.X. Peng, Z. Wang, H.B. Yu, Natl. Sci. Rev. 7 (2020) 1896-1905.
DOI PMID |
[11] |
D. Turnbull, M.H. Cohen, J. Chem. Phys. 34 (1961) 120-125.
DOI URL |
[12] |
F. Spaepen, Acta Metall. 25 (1977) 407-415.
DOI URL |
[13] |
Z. Evenson, R. Busch, Acta Mater. 59 (2011) 4404-4415.
DOI URL |
[14] |
P. Schall, D.A. Weitz, F. Spaepen, Science 318 (2007) 1895-1899.
PMID |
[15] |
Y.P. Mitrofanov, A. Makarov, V. Khonik, A. Granato, D. Joncich, S. Khonik, Appl. Phys. Lett. 101 (2012) 131903.
DOI URL |
[16] |
A. Granato, Phys. Rev. Lett. 68 (1992) 974.
DOI URL |
[17] |
N. Kobelev, V. Khonik, A. Makarov, G. Afonin, Y.P. Mitrofanov, J. Appl. Phys. 115 (2014) 033513.
DOI URL |
[18] |
G. Afonin, Y.P. Mitrofanov, A. Makarov, N. Kobelev, W. Wang, V. Khonik, Acta Mater. 115 (2016) 204-209.
DOI URL |
[19] |
V. Khonik, N. Kobelev, Metals 9 (2019) 605.
DOI URL |
[20] |
P.G. Debenedetti, F.H. Stillinger, Nature 410 (2001) 259-267.
DOI URL |
[21] |
K. Ngai, P. Lunkenheimer, C. Leon, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115 (2001) 1405-1413.
DOI URL |
[22] |
C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88(20 0 0) 3113-3157.
DOI URL |
[23] |
W.H. Wang, Prog. Mater. Sci. 106 (2019) 100561.
DOI URL |
[24] |
Z. Wang, W.H. Wang, Natl. Sci. Rev. 6 (2019) 304-323.
DOI URL |
[25] |
H. Yu, W. Wang, H. Bai, Y. Wu, M. Chen, Phys. Rev. B 81 (2010) 220201.
DOI URL |
[26] |
J. Ju, M. Atzmon, Acta Mater 74 (2014) 183-188.
DOI URL |
[27] |
J. Ju, D. Jang, A. Nwankpa, M. Atzmon, J. Appl. Phys. 109 (2011) 053522.
DOI URL |
[28] |
T. Lei, L.R. DaCosta, M. Liu, W. Wang, Y. Sun, A. Greer, M. Atzmon, Phys. Rev. E 100 (2019) 033001.
DOI URL |
[29] |
A. Van den Beukel, S. Van der Zwaag, A. Mulder, Acta Metall. 32 (1984) 1895-1902.
DOI URL |
[30] | V. Khonik, Phys. Status Solidi A 177 (2000) 173-189. |
[31] |
V. Khonik, J. Non-Cryst. Solids 296 (2001) 147-157.
DOI URL |
[32] |
C. Liu, E. Pineda, D. Crespo, Metals 5 (2015) 1073-1111.
DOI URL |
[33] |
B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V. Giordano, M. Gonzalez-Silveira, Phys. Rev. Lett. 109 (2012) 165701.
PMID |
[34] |
H. Zhou, S. Hilke, E. Pineda, M. Peterlechner, Y. Chushkin, S. Shanmugam, G. Wilde, Acta Mater 195 (2020) 446-453.
DOI URL |
[35] |
P. Luo, P. Wen, H. Bai, B. Ruta, W. Wang, Phys. Rev. Lett. 118 (2017) 225901.
DOI PMID |
[36] |
C. Moynihan, J. Schroeder, J. Non-Cryst. Solids 160 (1993) 52-59.
DOI URL |
[37] |
O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa, Y. Yokoyama, Acta Mater 58 (2010) 1829-1836.
DOI URL |
[38] |
G. Fan, J.F. Löffler, R. Wunderlich, H.J. Fecht, Acta Mater 52 (2004) 667-674.
DOI URL |
[39] |
I. Gallino, M.B. Shah, R. Busch, Acta Mater 55 (2007) 1367-1376.
DOI URL |
[40] | G. Wilde, S. Klose, W. Soellner, G. Görler, K. Jeropoulos, R. Willnecker, H. Fecht, Mater. Sci. Eng. A 226 (1997) 434-438. |
[41] |
A. Drehman, A. Greer, D. Turnbull, Appl. Phys. Lett. 41 (1982) 716-717.
DOI URL |
[42] | H. Zhou, M. Peterlechner, S. Hilke, D. Shen, G. Wilde, J. Alloys Compd. (2019) 153254. |
[43] |
G. Wilde, G. Görler, R. Willnecker, G. Dietz, Appl. Phys. Lett. 65 (1994) 397-399.
DOI URL |
[44] |
G. Wilde, G. Görler, R. Willnecker, H. Fecht, J. Appl. Phys. 87(20 0 0) 1141-1152.
DOI URL |
[45] |
B. Kestel, Ultramicroscopy 19 (1986) 205-211.
DOI URL |
[46] |
A. Makarov, G. Afonin, Y.P. Mitrofanov, R. Konchakov, N. Kobelev, J. Qiao, V. Khonik, J. Non-Cryst. Solids 500 (2018) 129-132.
DOI URL |
[47] |
A. Makarov, V. Khonik, Y.P. Mitrofanov, A. Granato, D. Joncich, S. Khonik, Appl. Phys. Lett. 102 (2013) 091908.
DOI URL |
[48] |
G. Afonin, Y.P. Mitrofanov, N. Kobelev, V. Khonik, J. Experiment. Theor. Phys. 131 (2020) 582-588.
DOI URL |
[49] |
E. Lambson, W. Lambson, J.E. Macdonald, M. Gibbs, G. Saunders, D. Turnbull, Phys. Rev. B 33 (1986) 2380.
PMID |
[50] |
O. Haruyama, A. Inoue, Appl. Phys. Lett. 88 (2006) 131906.
DOI URL |
[51] |
G. Wilde, Appl. Phys. Lett. 79 (2001) 1986-1988.
DOI URL |
[52] | G. Wilde, J. Non-Cryst. Solids 307 (2002) 853-862. |
[53] | P. Gill, S. Sauerbrunn, M. Reading, J. Thermal Anal. Calorimetry 40 (1993) 931-939. |
[54] |
M. Reading, A. Luget, R. Wilson, Thermoch. Acta 238 (1994) 295-307.
DOI URL |
[55] | W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes, 3rd edition, The art of scientific computing, Cambridge University Press, 2007. |
[56] |
Y.P. Mitrofanov, D. Wang, W. Wang, V. Khonik, J. Alloys Compd. 677 (2016) 80-86.
DOI URL |
[57] |
M. Reading, D. Elliott, V. Hill, J. Thermal Anal. 40 (1993) 949-955.
DOI URL |
[58] | Y. Liu, T. Fujita, D. Aji, M. Matsuura, M. Chen, Nat. Commun. 5 (2014) 1-7. |
[59] |
H.E. Kissinger, J. Res. Natl. Bureau Standards 57 (1956) 217.
DOI URL |
[60] |
T. Ichitsubo, E. Matsubara, S. Kai, M. Hirao, Acta Mater 52 (2004) 423-429.
DOI URL |
[61] |
N. Kobelev, V. Khonik, J. Non-Cryst. Solids 427 (2015) 184-190.
DOI URL |
[62] |
J. Qiao, Y.J. Wang, L. Zhao, L. Dai, D. Crespo, J.M. Pelletier, L.M. Keer, Y. Yao, Phys. Rev. B 94 (2016) 104203.
DOI URL |
[63] |
H.B. Yu, K. Samwer, Y. Wu, W.H. Wang, Phys. Rev. Lett. 109 (2012) 095508.
DOI URL |
[64] |
Y. Xu, J. Fang, H. Gleiter, H. Hahn, J. Li, Scr. Mater. 62 (2010) 674-677.
DOI URL |
[65] |
H. Sheng, E. Ma, M.J. Kramer, JOM 64 (2012) 856-881.
DOI URL |
[66] |
R. Zorn, Phys. Rev. B 55 (1997) 6249.
DOI URL |
[67] |
H.B. Yu, M.H. Yang, Y. Sun, F. Zhang, J.B. Liu, C.Z. Wang, K.M. Ho, R. Richert, K. Samwer, J. Phys. Chem. Lett. 9 (2018) 5877-5883.
DOI URL |
[68] |
J. Qiao, R. Casalini, J.M. Pelletier, J. Chem. Phys. 141 (2014) 104510.
DOI URL |
[69] |
Z. Wang, P. Wen, L. Huo, H. Bai, W. Wang, Appl. Phys. Lett. 101 (2012) 121906.
DOI URL |
[70] |
H. Yu, M. Tylinski, A. Guiseppi-Elie, M. Ediger, R. Richert, Phys. Rev. Lett. 115 (2015) 185501.
DOI PMID |
[71] |
S. Pan, S. Feng, J. Qiao, W. Wang, J. Qin, J. Alloys Compd. 664 (2016) 65-70.
DOI URL |
[72] |
W. Jiao, P. Wen, H. Peng, H. Bai, B. Sun, W. Wang, Appl. Phys. Lett. 102 (2013) 101903.
DOI URL |
[73] |
R. Richert, Eur. Phys. J. Special Topics 189 (2010) 223-229.
DOI URL |
[74] |
J. Qiao, Q. Wang, J. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI |
[1] | Siyi Di, Qianqian Wang, Yiyuan Yang, Tao Liang, Jing Zhou, Lin Su, Kuibo Yin, Qiaoshi Zeng, Litao Sun, Baolong Shen. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment [J]. J. Mater. Sci. Technol., 2022, 97(0): 20-28. |
[2] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[3] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[4] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[5] | Xuelian Wu, Si Lan, Xiyang Li, Ming Yang, Zhenduo Wu, Xiaoya Wei, Haiyan He, Muhammad Naeem, Jie Zhou, Zhaoping Lu, Elliot Paul Gilbert, Dong Ma, Xun-Li Wang. Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass [J]. J. Mater. Sci. Technol., 2022, 101(0): 285-293. |
[6] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[7] | Yan Li, Xingwang Cheng, Zhaolong Ma, Xuhai Li, Meng Wang. Dynamic response and damage evolution of Zr-based bulk metallic glass under shock loading [J]. J. Mater. Sci. Technol., 2021, 93(0): 119-127. |
[8] | L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass [J]. J. Mater. Sci. Technol., 2021, 83(0): 248-255. |
[9] | Y. Tang, H.B. Xiao, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang. Mechanical property and structural changes by thermal cycling in phase-separated metallic glasses [J]. J. Mater. Sci. Technol., 2021, 78(0): 144-154. |
[10] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[11] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[12] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
[13] | Xin Zhong, Tao Zhu, Yaran Niu, Haijun Zhou, Le Zhang, Xiangyu Zhang, Qilian Li, Xuebin Zheng. Effect of microstructure evolution and crystal structure on thermal properties for plasma-sprayed RE2SiO5 (RE = Gd, Y, Er) environmental barrier coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 141-151. |
[14] | Lin Xue, Liliang Shao, Qiang Luo, Lina Hu, Yunbo Zhao, Kuibo Yin, Mingyun Zhu, Litao Sun, Baolong Shen, Xiufang Bian. Liquid dynamics and glass formation of Gd55Co20Al25 metallic glass with minor Si addition [J]. J. Mater. Sci. Technol., 2021, 77(0): 28-37. |
[15] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||