J. Mater. Sci. Technol. ›› 2021, Vol. 78: 144-154.DOI: 10.1016/j.jmst.2020.10.050
• Review Article • Previous Articles Next Articles
Y. Tanga, H.B. Xiaoa, X.D. Wanga,*(), Q.P. Caoa, D.X. Zhanga,b, J.Z. Jianga,*(
)
Received:
2020-07-05
Revised:
2020-10-10
Accepted:
2020-10-12
Published:
2021-07-10
Online:
2020-11-21
Contact:
X.D. Wang,J.Z. Jiang
About author:
jiangjz@zju.edu.cn(J.Z. Jiang).Y. Tang, H.B. Xiao, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang. Mechanical property and structural changes by thermal cycling in phase-separated metallic glasses[J]. J. Mater. Sci. Technol., 2021, 78: 144-154.
Fig. 1. (a) Cryogenic thermal cycling procedure of metallic glass. Samples are cycled from hot water temperature (373K) to liquid nitrogen temperature (77K). At each end the holding time is 2min. (b) Schematic drawing of internal stresses with the application of thermal cycling. Due to the heterogeneous structure (Orange and green regions indicate different phases), the thermal expansion coefficient varies locally. When temperature is changed, the variations in thermal expansion or shrinkage cause internal stresses. The arrows in orange and green areas indicate compressive and tensile stresses.
Fig. 2. (a) Density values, (b) Micro Vickers hardness values, (c) Young’s modulus and (d) shear modulus values as a function of cycle numbers for the three MGs.
Fig. 3. DSC curves of the as cast and as cycled samples for (a) Ti41Zr25Be28Fe6, (b) Zr42Y14Co22Al22 and (c) Zr56Co14Cu14Al16. The illustration above the DSC curves in (a) is an enlarged view of the region represented exothermic event. The relationships between calculated structural relaxation enthalpy and cycle numbers for these three systems are shown in the inset.
Fig. 4. Compressive true stress-true strain curves of the as cast and as cycled samples for (a) Ti41Zr25Be28Fe6 and (c) Zr56Co14Cu14Al16 MGs. (b) The stress-deflection curves of the as cast and as cycled samples for Zr42Y14Co22Al22 MG.
Fig. 5. Statistical variations in distribution of the apparent Young’s modulus at as cast and as-cycled samples: (a) Ti41Zr25Be28Fe6, (b) Zr42Y14Co22Al22 and (c) Zr56Co14Cu14Al16.
Fig. 6. Structure factors S(q) and pair correlation functions g(r) of the as cast and as-cycled sample: (a, b) Ti41Zr25Be28Fe6, (c, d) Zr42Y14Co22Al22 and (e, f) Zr56Co14Cu14Al16. The arrow indicates the change of peak position. Two Gaussian formulas are combined to fit the shoulder and the main peak for Zr42Y14Co22Al22 and Zr56Co14Cu14Al16.
Fig. 7. SAXS results of the as cast and as cycled samples: (a) Ti41Zr25Be28Fe6, (b) Zr42Y14Co22Al22 and (c) Zr56Co14Cu14Al16. The solid lines are the fitting results by power-law. Inset shows the corresponding Porod correction curve.
Fig. 8. STEM images with the corresponding selected-area-diffraction patterns of the as cast and as-cycled samples: (a-c) Ti41Zr25Be28Fe6, (d-f) Zr42Y14Co22Al22 and (g-i) Zr56Co14Cu14Al16.
Fig. 9. Schematic illustration of the microstructure around a liquid-like region for the (a) as-cast, (b) sample treated by thermal cycling. (red sphere=loosely packed atom, yellow sphere=less loosely packed atom, light blue sphere=less densely packed atom, and dark blue sphere=densely packed atom).
Fig. 10. Correlation map during thermal cycling. The evolution of liquid-like zones, scale of heterogeneity, atomic structure and energy landscape with cycling are established based on (a) Zr42Y14Co22Al22 and (b) Zr56Co14Cu14Al16.
[1] |
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451(2008) 1085.
DOI URL |
[2] |
J.X. Zhao, F.F. Wu, R.T. Qu, S.X. Li, Z.F. Zhang, Acta Mater. 58(2010) 5420.
DOI URL |
[3] |
A.L. Greer, E. Ma, MRS Bull. 32(2007) 611-615.
DOI URL |
[4] |
Y. Li, Q. Guo, J.A. Kalb, C.V. Thompson, Science 322(2008) 1816-1819.
DOI URL |
[5] |
P. Murali, U. Ramamurty, Acta Mater. 53(2005) 1467-1478.
DOI URL |
[6] |
Z.F. Zhang, J. Eckert, L. Schultz, Metall. Mater. Trans. A 35(2004) 3489-3498.
DOI URL |
[7] | F. Zhu, H.K. Nguyen, S.X. Song, D.P.B. Aji, A. Hirata, H. Wang, K. Nakajima, M.W. Chen, Nat. Commun. 7(2016) 11516. |
[8] |
C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88(2000) 3113-3157.
DOI URL |
[9] |
J. Saida, R. Yamada, M. Wakeda, Sh. Ogata , Sci. Technol. Adv. Mater. 18(2016) 152-162.
DOI URL |
[10] | Y. Sun, A. Concustell, A.L. Greer, Nat. Rev. Mater. 96(2016) 1643-1663. |
[11] |
A.L. Greer, Y.H. Sun, Philos. Mag. 96(2016) 1643-1663.
DOI URL |
[12] |
T.C. Hufnagel, Nat. Mater. 14(2015) 867-868.
DOI PMID |
[13] |
Y. Zhang, W.H. Wang, A.L. Greer, Nat. Mater. 5(2006) 857-860.
PMID |
[14] |
F.O. Méar, B. Lenk, Y. Zhang, A.L. Greer, Scr. Mater. 59(2008) 1243-1246.
DOI URL |
[15] | F. Meng, K. Tsuchiya, Ii.S. Seiichiro, Y. Yokoyama, Appl. Phys. Lett. 101(2012), 121914. |
[16] | S. Takayama, Mater. Sci. Eng. 38(1979) 41-48. |
[17] |
A. Concustell, F.O. Méar, S. Suri˜nach, M.D. Baró, A.L. Greer, Philos. Mag. Lett. 89(2009) 831-840.
DOI URL |
[18] |
J. Pan, Y.X. Wang, Q. Guo, D. Zhang, A.L. Greer, Y. Li, Nat. Commun. 9(2018) 560.
DOI PMID |
[19] |
L. Berthier, J.L. Barrat, J. Chem. Phys. 116(2002) 6228-6242.
DOI URL |
[20] | P.F. Guan, M.W. Chen, T. Egami, Phys. Rev. Lett. 104(2010), 205701. |
[21] |
M. Zhang, Y.M. Wang, F.X. Li, S.Q. Jiang, M.Z. Li, L. Liu, Sci. Rep. 7(2017) 625.
DOI URL |
[22] |
J. Ketkaew, W. Chen, H. Wang, A. Datye, M. Fan, G. Pereira, U.D. Schwarz, Z. Liu, R. Yamada, W. Dmowski, M.D. Shattuck, C.S. O’Hern, T. Egami, E. Bouchbinder, J. Schroers, Nat. Commun. 9(2018) 3271.
DOI URL |
[23] |
S. Scudino, B. Jerliu, K.B. Surreddi, U. Kuhn, J. Eckert, J. Alloys Compd. 509(2011) S128-S130.
DOI URL |
[24] |
P. Leishangthem, A.D.S. Parmar, S. Sastry, Nat. Commun. 8(2018) 14653.
DOI URL |
[25] |
S.J. Kang, Q.P. Cao, L. Jonhson, Y. Tang, X.D. Wang, D.X. Zhang, I.S. Ahn, A. Caron, J.Z. Jiang, J. Alloys Compd. 795(2019) 493-500.
DOI URL |
[26] |
T. Ichitsubo, S. Hosokawa, K. Matsuda, E. Matsubara, N. Nishiyama, S. Tsutsui, A. Baron, Phys. Rev. B 76 (2007), 140201.
DOI URL |
[27] | W. Dmowski, T. Iwashita, C.P. Chuang, J. Almer, T. Egami, Phys. Rev. Lett. 105(2010), 205502. |
[28] |
H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mater. 10(2011) 439-442.
DOI URL |
[29] |
J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma, Proc. Natl. Acad. Sci. U.S.A. 111(2014) 14052-14056.
DOI URL |
[30] |
J. Ding, Y.Q. Cheng, E. Ma, Acta Mater. 69(2014) 343-354.
DOI URL |
[31] |
Y. Fan, T. Iwashita, T. Egami, Nat. Commun. 5(2014) 5083.
DOI URL |
[32] |
S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524(2015) 200-203.
DOI PMID |
[33] |
S.V. Ketov, A.S. Trifonov, Y.P. Ivanov, A.Y. Churyumov, A.V. Lubenchenko, A.A. Batrakov, J. Jiang, D.V. Louzguine-Luzgin, J. Eckert, J. Orava, A.L. Greer, NPG Asia Mater. 10(2018) 137-175.
DOI URL |
[34] |
M. Wakeda, J. Saida, J. Li, S. Ogata, Sci. Rep. 5(2015) 10545.
DOI URL |
[35] | Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106(2011), 125504. |
[36] |
H.B. Lou, X.D. Wang, Q.P. Cao, D.X. Zhang, J. Zhang, T.D. Hu, H.K. Mao, J.Z. Jiang, Proc. Natl. Acad. Sci. U.S.A. 110(2013) 10068.
DOI URL |
[37] | G. Porod, Acta Phys. Austr. 12(1948) 255-292. |
[38] |
G. Goerigk, D.L. Williamson, Solid State Commun. 108(1998) 419-424.
DOI URL |
[39] |
L.S. Huo, J.F. Zeng, W.H. Wang, C.T. Liu, Y. Yang, Acta Mater. 61(2013) 4329-4338.
DOI URL |
[40] | R.J. Arsenault, M. Taya, Acta Metall. 3(1987) 651-659. |
[1] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[2] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[3] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[4] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[5] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[6] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[7] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
[8] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[9] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[10] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[11] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[12] | Lin Xue, Liliang Shao, Qiang Luo, Lina Hu, Yunbo Zhao, Kuibo Yin, Mingyun Zhu, Litao Sun, Baolong Shen, Xiufang Bian. Liquid dynamics and glass formation of Gd55Co20Al25 metallic glass with minor Si addition [J]. J. Mater. Sci. Technol., 2021, 77(0): 28-37. |
[13] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[14] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[15] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||